Computational Analysis of
Sound and Music

Music Information Retrieval — Music Tagging & Similarity

Dr.-Ing. Jakob AbeRer
Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

© Jakob AbeRer, 2024 https://machinelistening.github.io/casm



https://machinelistening.github.io/casm

Music Tagging & Similarity

Outline

= Music Tagging

=  Music Similarity
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Music Tagging & Similarity

Motivation

= Musical Instrument

= Musical Genre
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Music Tagging & Similarity

Motivation

= What's that song again? Who's singing that?

= Audio identification

= | want to learn that song on my instrument!

= Automatic music transcription

= What songs are similar? How to generate a playlist?

= Audio similarity search

= How to organize my music? Which genre / style?

= Audio classification Fig-M5-6
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Music Tagging
Task

= Tags
= Textual (objective / subjective) annotations of songs
= Examples
= |nstruments (drums, bass, guitar, vocals ...)
= Genre (classical, electro, hip hop)
= Mood (mellow, romantic, angry, happy)
= Miscellaneous (noise, loud, ambient)
= Challenge
= Music pieces change their characteristics over time

= E.g.:trumpet plays only in the chorus (jazz)
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Music Tagging
Traditional Approach

= Audio feature engineering & music domain knowledge

= Standard classification methods (GMM, SVM, kNN)
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Music Tagging
DL-based Approach
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(d)

(a) Feature engineering (MFCC) (c) Joint feature learning &

(b) Low-level feature classification (CNN)

(d) End-to-end learning
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Music Tagging
DL-based Approach

= Joint representation learning & classification using CNNs

= |nput: spectrograms (2D) or audio samples (1D end-to-end)

= |ntegrate musical knowledge in network design (e.g., filter shapes)

Front-end Back-end
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Spectrogram

Harmonic tensor Fig-M6-2
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Music Tagging
DL-based Approach

= End-to-end learning
= Model input is low-level representation (audio waveform)
= No pre-processing / assumptions required
= Not restricted to spectral magnitudes - can model phase!

= Requires large amounts of training data
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Music Tagging
DL-based Approach

= Transfer Learning
= Pre-train model on source task (lot of data available)

* Fine-tune model on target task (only little data available)
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Fig-M6-4
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= Source model (CNN) - Target model (embeddings + shallow classifier)
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Music Similarity
Task

= Retrieval tasks
= Music fingerprinting (retrieve title, artist, e.g., Shazam app)
= Cover song identification (similar text, chord progressions ...)

= Music replacement (similar style, instrumentation)

= Specificity of different tasks

High Specificity Low
Cover Song . Instrument-based
Identification : Retrieval .
Music Music Genre/Style
Finger-printing Replacement Similarity
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Music Similarity
Task

=  Music = inherently multi-dimensional

= Example: similarity between three tracks A, B, and C

instrument /.

* Challenge A B
A B
= Large music databases %’ Eﬁ%r(

= Incomplete / missing metadata .,’ .................... track
Ce. _ b
: T -e B
= Query by example - general retrieval approach mood
= Retrieval most similar song S given a query song Q Fig-M6-6
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Music Similarity
Traditional Approach

= Different dimensions of music similarity

Melodic similarity (pitch contours)

Timbral similarity (instrumentation)

Am | Em | Am | G F

Rhythmic similarity (patterns)
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Structural / harmonic similarity (segments, chords)

Fig-M6-6
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Music Similarity
Traditional Approach

= Metric learning
= Model (abstract) notion of similarity between data instances
= Pair-wise distance between feature representations

" Training

=  Proximity between similar instances
Feature Space

= Distance between dissimilar instances A
= Query Q "->" Ranked list of most similar instances S ® ® ® [ )
= Distance measures
= Euclidean distance, Cosine distance, etc. ® S eo—@ o5,
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Music Similarity
Traditional Approach

= Disentanglement learning

= Goal - separate underlying semantic concepts (e.g., genre, instrument,
mood)

= |earnt jointly

= remain separable in the embedding space

= |mproves
= Music tagging (classification)

= Music recommendation (similarity)
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Music Similarity
Traditional Approach

= Triplet-based Training

Conditional Similarity Networks (CSN) [Lee, 2020]
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Programming session

jupyter
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Fig-A2-13
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