Computational Analysis of Sound and Music



Music Information Retrieval – Source Separation

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

Source Separation

- Introduction
- Tasks
- Traditional Method
- DL-based Methods

Introduction

- Music recordings
 - Mixtures of different musical instruments (sources) playing simultaneously
- Sound Separation
 - Reverse engineering the audio mixing process
 - Output: 1 stem per instrument

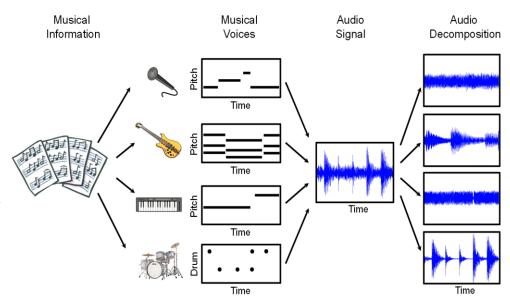


Fig-M5-1

Introduction

- Audio mix is influenced by
 - Instrument characteristics (timbre, note decay, ...)
 - Musical performance (timing, dynamics, playing techniques, ...)
 - Recording chain (microphones, room acoustics)

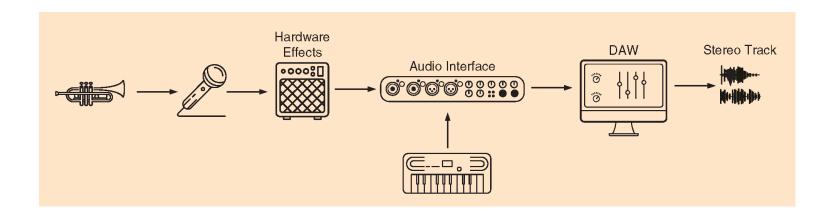


Fig-M5-2

Tasks

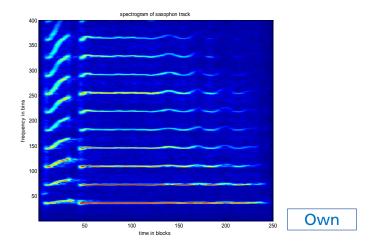
- Audio remixing
- Audio upmixing
 - Mono → stereo
 - Stereo \rightarrow 5.1
- Music Analysis
 - Transcription, beat tracking, harmony analysis etc.
- Music Education
 - Solo / Backing track generation

Tasks

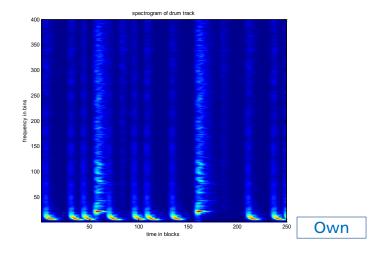
- Harmonic/percussive separation
 - \blacksquare H \rightarrow stable harmonic components (fundamental frequency, overtones)
 - $Arr P \rightarrow$ transient components (drum sounds, note attacks)
- Solo/accompaniment separation
 - S → predominant melody instrument
 - A → accompanying instruments
- Singing voice separation
 - $S \rightarrow singing voice (male / female)$
 - \blacksquare A \rightarrow band
- Separation of all sources

Traditional Approaches

- Harmonic/percussive (H/P) separation
 - Different spectral characteristics of harmonic and percussive signals

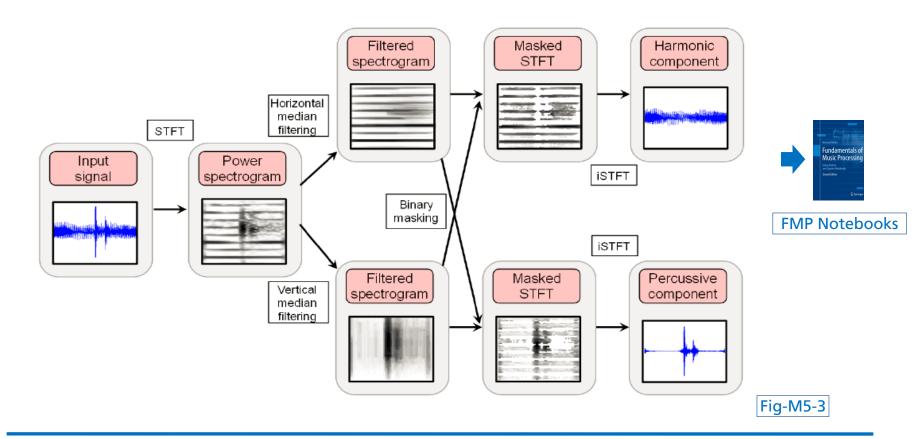


- Time-continuous (horizontal)
- Localized in frequency



- Wide-band (vertical)
- Localized in time

Traditional Approaches



Tasks

- Phase-based H/P separation
 - Harmonic sources → phase change values are predictable
 - Percussive sources → unpredictable phase (noise-like characteristics)
 - Instantaneous Frequency Distribution (IFD)
 - How does phase change over time?

$$\Phi(k,n) = \frac{1}{2\pi} \frac{d\phi(k,n)}{dn}$$
Instantaeneous
Frequency
Gradient of (unwrapped) phase over time

Tasks

- Phase-based H/P separation
 - Harmonic mask → phase change within range / predictable?

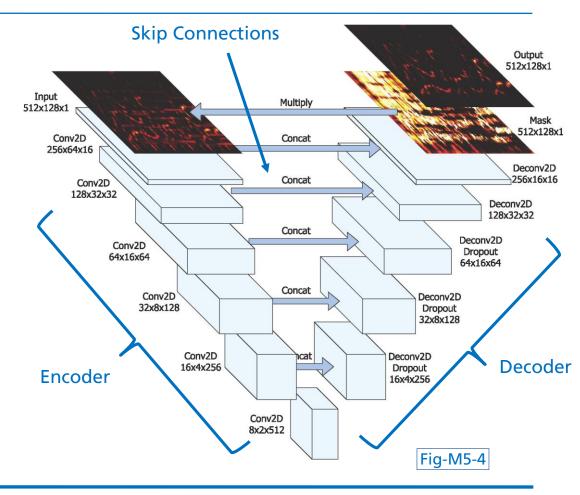
$$H(k,n) = \begin{cases} 1 & \text{if } \Delta_{k_{Low}} < \Phi(k,n) < \Delta_{k_{High}} \\ 0 & \text{otherwise} \end{cases}$$

Percussive mask

$$P(k,n) = 1 - H(k,n)$$

DL-based Approaches

- U-Net based [Jannson et al., 2017]
 - Input → magnitude spectrogram (mix)
 - Output → 2 soft masks (voice / other)
- Issue
- Only magnitude of STFT is modeled
- Still phase from the mixture is used



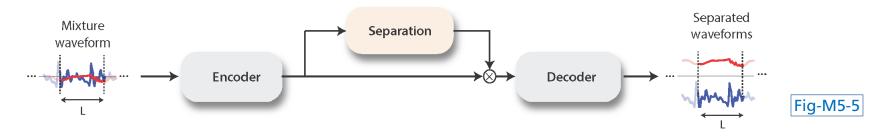
DL-based Approaches

- Spleeter [Hennequin et al., 2020]
 - Open-source version for MIR research
 - 3 pre-trained models
 - 2 stems (vocals and accompaniments)
 - 4 stems (vocals, drums, bass, and other)
 - 5 stems (vocals, drums, bass, piano and other)

Spleeter Demo

DL-based Approaches

- Conv-TasNet [Luo & Mesgarani, 2019]
 - Time-domain speech separation network (end-to-end)
 - Encoder → optimized representation for speaker separation
 - Seperation → masks (weighting functions)
 - Decoder → invert to waveforms
 - Temporal convolutional networks (TCN)
 - Stack of 1-D dilated convolutional blocks
 - Large receptive field → model long-term dependencies



DL-based Approaches

Conv-TasNet [Luo & Mesgarani, 2019]

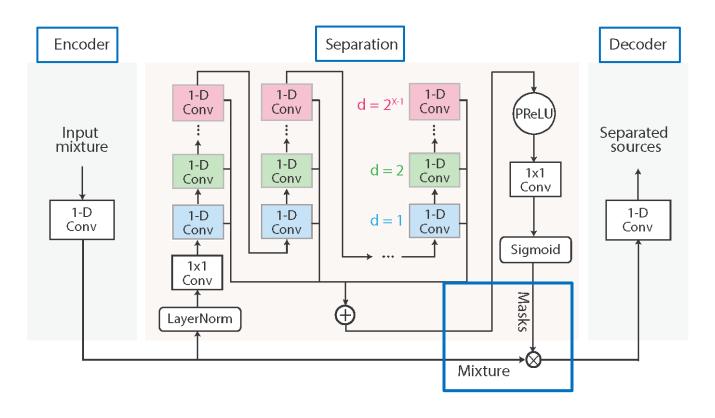


Fig-M5-6

Evaluation Metrics

Objective Metrics

Signal-to-Distortion Ratio (SDR)

$$SDR = 10 \log_{10} \left(rac{\|s_{ ext{target}}\|^2}{\|e_{ ext{total}}\|^2}
ight)$$

Higher SDR – higher separation quality

- s_{target} original source signal
- e_{total} total error between separated and original signal

Signal-to-Interference Ratio (SIR)

$$SIR = 10 \log_{10} \left(rac{\|s_{ ext{target}}\|^2}{\|e_{ ext{interf}}\|^2}
ight)$$

- Higher SIR better isolation from other sources
- e_{interf} interference error (from other sources)

Evaluation Metrics

Objective Metrics

Signal-to-Artifacts Ratio (SAR)

$$SAR = 10 \log_{10} \left(rac{\|s_{ ext{target}}\|^2}{\|e_{ ext{artif}}\|^2}
ight)$$

 Higher SAR – higher separation quality & fewer artifacts e_{artif} —artifact error (unwanted distortions from separation)

Evaluation Metrics

Perceptual Metrics

- PEASS (Perceptual Evaluation methods for Audio Source Separation) [Emiya et al.,
 2010]
 - Set of metrics to assess the perceptual quality of separated signals.
 - Overall Perceptual Score (OPS): Overall perceived quality.
 - Target-related Perceptual Score (TPS): Perceived quality of the target signal.
 - Interference-related Perceptual Score (IPS): Perceived level of interference.
 - Artifacts-related Perceptual Score (APS): Perceived level of artifacts.

Source Separation Research - Online Demos

- Time-Domain Source Separation
 - Online Demo: Separation of Vocals, Bass, Drums, Others
- Score-Informed Drum Separation
 - Online Demo: Non-Negative Matrix Factor Deconvolution (NMFD) for decomposing drum breakbeats into kick drum, snare drum, and hi-hat
- Cascaded Harmonic-Residual-Percussive Separation
 - Online Demo: Mid-level timbre feature to describe timbre changes in music recordings

References

Images

```
Fig-M5-1: [Müller, 2021], p. 422, Fig. 8.1
Fig-M5-2: [Cano et al., 2019], p. 3, Fig. 3
Fig-M5-3: [Müller, 2021], p. 425, Fig. 8.3
Fig-M5-4: [Jansson, 2017], p. 3, Fig. 1
Fig-M5-5: [Luo & Mesgarani, 2019], p. 3, Fig. 1(A)
Fig-M5-6: [Luo & Mesgarani, 2019], p. 3, Fig. 1(B)
```


References

References

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Cano, E., Fitzgerald, D., Liutkus, A., Plumbley, M. D., & Stoter, F. R. (2019). Musical Source Separation: An Introduction. IEEE Signal Processing Magazine, 36(1), 31–40.

Emiya, V., Vincent, E., Harlander, N., Hohmann, V. (2010): The PEASS Toolkit - Perceptual Evaluation methods for Audio Source Separation. International Conference on Latent Variable Analysis and Signal Separation, St. Malo, France.

Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A., & Weyde, T. (2017). Singing Voice Separation with Deep U-Net Convolutional Networks. Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), 745–751. Suzhou, China

Hennequin, R., Khlif, A., Voituret, F., & Moussallam, M. (2020). Spleeter: a fast and efficient music source separation tool with pretrained models. Journal of Open Source Software, 5(50), 2154.

Luo, Y., & Mesgarani, N. (2019). Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(8), 1256–1266.

