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Source Separation

Introduction

= Music recordings

Mixtures of different
musical instruments
(sources) playing
simultaneously

= Sound Separation
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Source Separation

Introduction

= Audio mix is influenced by
= |nstrument characteristics (timbre, note decay, ...)
= Musical performance (timing, dynamics, playing techniques, ...)

= Recording chain (microphones, room acoustics)
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Source Separation
Tasks

Audio remixing

Audio upmixing
= Mono - stereo

= Stereo - 5.1

Music Analysis

= Transcription, beat tracking, harmony analysis etc.

Music Education

= Solo / Backing track generation
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Source Separation
Tasks

= Harmonic/percussive separation
= H - stable harmonic components (fundamental frequency, overtones)
= P - transient components (drum sounds, note attacks)
= Solo/accompaniment separation
= S - predominant melody instrument
= A - accompanying instruments
= Singing voice separation
= S - singing voice (male / female)
= A - band

= Separation of all sources
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Source Separation

Traditional Approaches

= Harmonic/percussive (H/P) separation

= Different spectral characteristics of harmonic and percussive signals
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Source Separation

Traditional Approaches

Filtered Masked Harmonic
spectrogram STFT component
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Source Separation
Tasks

» Phase-based H/P separation
= Harmonic sources - phase change values are predictable
= Percussive sources - unpredictable phase (noise-like characteristics)
= |nstantaneous Frequency Distribution (IFD)

= How does phase change over time?

1 d¢p(k,n)
d(k,n) =
’ (k,n) 2r dn
Instantaeneous \
Frequency Gradient of (unwrapped)

phase over time
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Source Separation
Tasks

» Phase-based H/P separation

= Harmonic mask - phase change within range / predictable?

1 ifAg,  <P(k,n)< Akmgh
0 otherwise

H(k‘,n){

®»  Percussive mask

P(k,n)=1—- H(k,n)
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Source Separation
DL-based Approaches

= U-Net based [Jannson et al.,

2017]
= |nput - magnitude
spectrogram (mix)
= Qutput - 2 soft
masks (voice / other:
= [ssue

= Only magnitude of
STFT is modeled

= Still phase from the
mixture is used
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Source Separation
DL-based Approaches

= Spleeter [Hennequin et al., 2020]
= QOpen-source version for MIR research
= 3 pre-trained models
= 2 stems (vocals and accompaniments)
= 4 stems (vocals, drums, bass, and other)

= 5 stems (vocals, drums, bass, piano and other)

/_\\
Q | Spleeter Demo
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Source Separation
DL-based Approaches

= Conv-TasNet [Luo & Mesgarani, 2019]
= Time-domain speech separation network (end-to-end)
= Encoder - optimized representation for speaker separation
= Seperation - masks (weighting functions)
= Decoder - invert to waveforms
= Temporal convolutional networks (TCN)
= Stack of 1-D dilated convolutional blocks

= Large receptive field > model long-term dependencies
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— y y v b .
L Fig-M5-5
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Source Separation
DL-based Approaches

= Conv-TasNet [Luo & Mesgarani, 2019]
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Evaluation Metrics
Objective Metrics

= Signal-to-Distortion Ratio (SDR) inal ional
" Starget — Original source signa

€iotal — total error between

|€tota ||* . .
separated and original signal

- I target
SDR = 10logy,

= Higher SDR — higher separation
quality

= Signal-to-Interference Ratio (SIR)

einterf — iNterference error (from

_ [|taxget |
SIR = 10logy,
other sources)

‘ | €interf ‘ | 2

= Higher SIR — better isolation from
other sources
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Evaluation Metrics
Objective Metrics

= Signal-to-Artifacts Ratio (SAR)

2
S :

SAR = 101logy, (”tafget2) = e?rtif .—artlfact error (quanted
| €arti| distortions from separation)

= Higher SAR — higher separation
guality & fewer artifacts
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Evaluation Metrics

Perceptual Metrics

=  PEASS (Perceptual Evaluation methods for Audio Source Separation) [Emiya et al.,

2010]

Set of metrics to assess the perceptual quality of separated signals.
Overall Perceptual Score (OPS): Overall perceived quality.

Target-related Perceptual Score (TPS): Perceived quality of the target
signal.

Interference-related Perceptual Score (IPS): Perceived level of
interference.

Artifacts-related Perceptual Score (APS): Perceived level of artifacts.
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Source Separation Research - Online Demos

= Time-Domain Source Separation

" Online Demo: Separation of Vocals, Bass, Drums, Others

= Score-Informed Drum Separation

= Online Demo: Non-Negative Matrix Factor Deconvolution (NMFD) for
decomposing drum breakbeats into kick drum, snare drum, and hi-hat

= Cascaded Harmonic-Residual-Percussive Separation

= Online Demo: Mid-level timbre feature to describe timbre changes in
music recordings
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