Computational Analysis of
Sound and Music

11
e
all | 5,

Environmental Sound Analysis — Acoustic Scene
Classification

Dr.-Ing. Jakob AbeRer
Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

© Jakob AbeRer, 2024 https://machinelistening.github.io/casm



https://machinelistening.github.io/casm

Acoustic Scene Classification

Outline

Introduction & Application Scenarios

Traditional Approaches

= Deep Learning-based Approaches

Current research topics
= Domain adaptation

»  Efficient models
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Acoustic Scene Classification

Introduction
= Acoustic scene classification (ASC) E HW“"”‘"'" ‘**W‘ ‘H‘H’**H
=  Multi-class (1 of N) classification scenario ) il il !

Sound Scene Classification J
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= Summative label (tagging) [

= Common Classes

» |ndoor

System output

= Airport, shopping mall, metro station

=  Qutdoor

= Pedestrian street, urban park, traffic

= Transportation

= Travelling by bus / metro / tram
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Acoustic Scene Classification

Introduction

= |nterdependence between sound events and acoustic scenes
= Acoustic scene
= Typical set of sounds
= Example: Office
= Keyboard clicks
= Human conversations
= Printer

= Air conditioner
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Acoustic Scene Classification

Application Scenarios

Context-aware devices (hearables, cell phones)
Smart cities (improve city planning, traffic management, and public safety)
Content analysis (indexing and organizing multimedia content)

Human-computer interaction (natural interaction with devices through voice
commands and ambient sound recognition)

Healthcare (monitoring patients' acoustic environments in hospitals or homes)
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Acoustic Scene Classification

Traditional Approaches

= Timbre-related features (MFCC, Mel Spectrogram)
= (lassification algorithms (SVM, GMM)

= Recurrence Quantification Analysis (RQA) [Roma et al., 2014]

= Measure sound repetitively in acoustic scenes
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Acoustic Scene Classification

Deep Learning-based Approaches

= General design choices

CNN & CRNN models (similar to SED)
Temporal result aggregation (pooling) within network
Final layer: Softmax activation function (multiclass classification)
Data Augmentation
= Mixup
= SpecAugment

Ensemble models
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Acoustic Scene Classification

Deep Learning-based Approaches

= Label encoding
= One-hot-encoded (global) target
= Example
= 4 scene classes (bus, office, home, forest)

= Encoding of an office recording
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Acoustic Scene Classification

Deep Learning-based Approaches

= Example 1: [McDonnel & Gao, 2020]

Audio Signal

Mel Spectrogram

= Based on ResNet architectures

= Mel spectrogram split into low/high
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Acoustic Scene Classification

Deep Learning-based Approaches

= Example 2: [Koutini et al. 2019]

= Modifications of residual block (improved stability and robustness)

(1) Residual Block (2) Shake-Shake Block
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= Frequency-aware CNN

= Additional channel with normalized frequency between O and 1
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Acoustic Scene Classification

Domain Adaptation

= Domain shift differences in data distribution due to
= Room acoustics (reverb, reflections)
= Microphone characteristics (frequency response, directionality)
= Domain adaptation
= Align source and target data distributions
=  Unsupervised: adversarial training [Gharib, 2018]
= Supervised: transfer learning
= Approaches
= Data augmentation

= Data normalization [Johnson, 2020] [Latifi, 2023]
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Acoustic Scene Classification

Domain Adaptation

= Domain adaptation (DA)

= Unsupervised DA via adversarial training [Gharib, 2018]
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Acoustic Scene Classification

Domain Adaptation

= Data normalization

= Align source and target data distribution (zero mean & standard
deviations) [Johnson, 2020]

= Reduce domain shift

Metal ball surface
classification

(colors = classes,
shadings = recordings)
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Acoustic Scene Classification
Efficient Models

= Goals
= Reduce model size — fewer parameters, less memory required

= Reduce latency (inference time) / lower energy consumption

= Approaches ([Wang, 2021])
= Model pruning
= |dentify & remove redundant connections / neurons

Before pruning After pruning
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Acoustic Scene Classification
Efficient Models

= Approaches
= Quantization
= Reduce numeric precision while minimize information loss
= Ex.: 32-bit floating point -> 8-bit fixed point (256 values)
= Reduce memory footprint of network weights
= Low-rank tensor decompositions

= Replace (many) redundant filters by a linear combination of fewer
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Programming session
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