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Convolutional Neural Networks (CNNs)

Motivation

= Hierarchical feature learning of temporal-spectral patterns

= Local temporal-spectral patterns - long-term patterns
= Shared weights

= Fewer parameters
= Translation equivariance

= Example: temporal shift of sound - same sound class
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Convolutional Neural Networks (CNNs)

Convolutional Layers

= Components
* |nput feature X € RM*N
= Kernel K € Rf*k
= Featuremap S

= “Convolution” operation (actually a cross-correlation)
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" Parameters

= Number of kernels

= Kernel size

tensorflow.keras.layers.Conv2D
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Convolutional Neural Networks (CNNs)

Convolutional Layers

= Stride sp

= Step size, with which K is shifted across X
= Optional symmetric zero-padding by p;, elements in X

= Valid“ convolution (p;, = 0) = S is smaller than X

= Same“ convolution (p;, = %) — S has the same shape as X
= Dilation rate d,

= Determines whether K

= covers adjacent spatial elementsin X (d;, = 1) or

= skips one or more elements (d; > 1)

tensorflow.keras.layers.Conv2D
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Convolutional Neural Networks (CNNs)

Convolutional Layers

| ]
Examples (1) Valid Convolution (s, = 1,py = 0, dy =1)

-+

(3) Valid Convolution (si = 2,p = 0,dy = 1) (4) Valid Convolution (s, = 1,p = 0,dy =

—
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Convolutional Neural Networks (CNNs)

Resampling Layers

= Receptive field

= Fraction of the input image, which a neuron
in a layer can respond to.

= Larger receptive field is generally beneficial
for improving (but: risk overfitting)

(1) Non-Dilated Convolution (dy = 1) (2) Dilated Convolution (dy =2)
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Convolutional Neural Networks (CNNs)

Resampling Layers

= Pooling

= Spatial downsampling of S

Pooling operation

=  Max pooling (maximum)

= Average pooling (mean)

Pooling

Increases translation invariance

Reduces number of parameters Oown

tensorflow.keras.layers.AveragePooling2D

tensorflow.keras.layers.MaxPooling2D
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Convolutional Neural Networks (CNNs)

Batch Normalization Layers

= Why?

= Prevents internal data distribution shift (“covariate shift”)

= Stabilizes and speeds up training
= Data Tensor X' € REXF*N

= Mini-batch size B, number of frequency bins F, number of frames N
= Steps

= Standardization (zero mean, unit variance) per mini-batch

= Optional additional transformation with learnable scaling & shifting
parameter

tensorflow.keras.layers.BatchNormalization
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Convolutional Neural Networks (CNNs)

Common Architectures

=  Basic Architecture
= |nput layer (fixed patch size)
= “Front-End”: 3 Convolutional Blocks

= Convolutional Layer (C) - Max Pooling (MP) - RelLU

= Flatten
= 4D tensor X € REXFXNX1 39D tensor X € REXFN

= “Back-End” = Dense + RelLU + Dense + Softmax
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Convolutional Neural Networks (CNNs)

Common Architectures

= “VGG” Architecture

= Pairs of convolutional layers with small kernel size and intermediate
activation function

= Same receptive field as one CL with large kernel size but fewer
parameters

= Additional non-linearity makes model more expressive
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Convolutional Neural Networks (CNNs)

Common Architectures

= Residual Networks
= Deep neural networks suffer from vanishing gradient problem
= Residual blocks with skip connection
= Combine identity mapping with convolutional layers

= Allow for steady gradient flow & deeper networks
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Convolutional Recurrent Neural Networks (CRNNs)

Recurrent Neural Networks

= Commonly used to model sequential data e.g. in natural language processing (NLP)
= Recurrent layers
= Additional time-dependent state variable a<t~ (memory)

= Weight sharing over time (CNN: over space)

Own

tensorflow.keras.layers.SimpleRNN
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Convolutional Recurrent Neural Networks (CRNNs)

Recurrent Neural Networks

= Steps

State update
a<t> = gl(Waaa<t_1> + Waxa<t> + by)
Output update
5;<t> — gz(Wyaa<t> 4+ by)

Activation functions (g4, g1)

Trainable parameters (W4, Wy, Wy q, by, by)

<1> <2> <t>
y y y

a<0> r 1a<1>( ] a<t—1>{ J a<t>
x<1> x<2> x<t>
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Convolutional Recurrent Neural Networks (CRNNs)

Recurrent Neural Networks

= Gated Recurrent Units (GRU)
= Update gate to control information flow from previous state
= Forget gate to control forgetting of past information

= Long Short-Term Memory (LSTM)
* |nput/ Output / Forget gate

® |ncreased computational complexity

tensorflow.keras.layers.GRU

tensorflow.keras.layers.LSTM
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Convolutional Recurrent Neural Networks (CRNNs)

Convolutional Recurrent Neural Networks

= |ntegrating recurrent layer in CNN backend
® Front-end learns relevant local temporal-spectral patterns

= Recurrent layers allow for temporal modeling thereof
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Autoencoder / U-Net

Autoencoder

= Two-part structure
= Encoder - Map input to lower-dimensional (latent) space
= Decoder - Reconstruct input from latent space representation
= Need to learn compressed/efficient feature representation (encodings)
= Applications
= Compression
= Denoising (map noisy input to clean input)
= Anomaly detection (high reconstruction error indicates anomaly)
= Generative models (using decoder)

= Main advantage - unsupervised training possible
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Autoencoder / U-Net
U-Net

= Components

= Convolutional blocks (CB)

= Down-sampling (DS) in encoder - Up-sampling (US) in decoder

= Additional skip-connections
= Applications

=  Music transcription & source separation

X HCB oo »~CO—~CB~ VY
DS—CB[------------- + CO—CB US
ps-—{cBl—{Us
Encoder Bottleneck Decoder
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Programming session

jupyter

®

© Jakob AbeRer, 2024 https://machinelistening.github.io/casm

Fig-A2-13



https://machinelistening.github.io/casm

References

Images

Fig-D3-1: https://www.wandb.com/articles/intro-to-cnns-with-wandb
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