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Acoustic Scene Classification

Task

B Acoustic scene classification (ASC) E [ta] [ttt | frrrsss]
B Multi-class (1 of N) classification scenario il ! |
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B Acoustic scene

M Typical set of sounds

System output

B Example: Office
m Keyboard clicks
B Human conversations
M Printer

B Air conditioner
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Acoustic Scene Classification
Pipeline

B Label encoding

B One-hot-encoded (global) target
M Example
B 4 scene classes (bus, office, home, forest)

B Encoding of an office recording
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Acoustic Scene Classification
Pipeline

B Network architectures

® Similar to SED (CNN & CRNN)
® Differences

B Temporal result aggregation within network
W Dense layer / pooling

W Final layer: Softmax activation function (multiclass classification)




Acoustic Scene Classification
Pipeline

B Network architectures

® Similar to SED (CNN & CRNN)
® Differences

B Temporal result aggregation within network
W Dense layer / pooling

W Final layer: Softmax activation function (multiclass classification)
B Current Research Topics [AbeBer, 2020]

B Attention — learn to focus on spectrogram regions

B Open-set classification — detect unknown classes

B Transfer learning — fine-tune pre-trained models with less data
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Acoustic Anomaly Detection
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Acoustic Anomaly Detection
Task

B Goal

B Detect deviations from “normal” state [ b ]

M |s emitted sound from target object v
normal or anomalous?

B Challenges

Input

—

Anomalous Sound Detection System ]

!

. 2

B Often only training examples for E Anomaly
normal state available

B Acoustic anomalies are often subtle

compared to louder background noise
B Application Scenarios

B Detecting machine failures

M Intrusion detection (glass break...)




Acoustic Anomaly Detection
Approaches

B Traditional methods ————
M Distribution outlier detection
B Modelling normal state distribution
M Detect distribution outliers
M E.g.: One-class GMM / SVM




Acoustic Anomaly Detection
Approaches

Novelty Detection

B Traditional methods
M Distribution outlier detection
B Modelling normal state distribution

B Detect distribution outliers

M E.g.: One-class GMM / SVM

B Time-series analysis
® AD via prediction error 201 =
M E.g.: Autoregressive models, :

Hidden-Markov-Models (HMM) :
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Acoustic Anomaly Detection

Approaches

B Novel methods

B Autoencoder (encoder —
decoder) models

M |dea:

B Normal sounds can be
better reconstructed than
anomalous sounds

Input

Encoder

A A

Decoder

[

—<

|

Embeddings

____________________

\

O 0O

Output

Own




Acoustic Anomaly Detection

Approaches

B Novel methods

B Autoencoder (encoder —
decoder) models

M |dea:

B Normal sounds can be
better reconstructed than
anomalous sounds

B Dense, convolutional,
variational AE

¥ Interpolation DNN

B Interpolate spectrogram

frame from surrounding
frames
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Real-World Deployment

Project Phases

(1) Requirement Analysis

A 4

(2) Data Acquisition

\ 4

(3) System Design & Implementation

!

(4) System Evaluation

A 4

(5) Product Demonstration
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Real-World Deployment

(1) Requirement Analysis

B Target application
B Research problem

B Relevant sound classes




Real-World Deployment

(1) Requirement Analysis

B Target application
B Research problem
M Relevant sound classes
B Performance requirements
B Analysis window size
B Metrics (accuracy, recall, precision, f-score, etc.)
M User Experience

M Error type categorization / prioritization
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B Target application (context-aware cell phones)

M Main characteristics (ringtone type & loudness adapts to user’s
environment)
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environment)
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M Metrics (accuracy, recall, precision, f-score, etc.) (F > 0.85)




Real-World Deployment

(1) Requirement Analysis (Example)

B Target application (context-aware cell phones)

M Main characteristics (ringtone type & loudness adapts to user’s
environment)

B Research problem (acoustic scene classification)

M Relevant sound classes (at home, opera, traffic ...)
B Performance requirements

B Analysis window size (5s)

M Metrics (accuracy, recall, precision, f-score, etc.) (F > 0.85)
M User Experience

M Error type categorization / prioritization

B (confusion opera < traffic worse than traffic <> at home)




Real-World Deployment

(1) Requirement Analysis

B Performance constraints

B Computer platform (Raspberry 4, Jetson Nano, etc.)

® Memory, CPU / GPU performance P

B Inference time vs. real-time

Jetson Nano




Real-World Deployment

(1) Requirement Analysis

B Performance constraints

B Computer platform (Raspberry 4, Jetson Nano, etc.)

® Memory, CPU / GPU performance

B Inference time vs. real-time

B Model constraints
W Architecture
M # Parameters
W # Layers
® Model size

¥ Floating-point resolution

Jetson Nano




Real-World Deployment
(2) Data Acquisition

B Preliminary considerations
B Acoustic conditions at deployment scenario / target use-case

M Room size / characteristics, echoes / feedback, background
noises

M Target sound variability
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Real-World Deployment
(2) Data Acquisition

B Preliminary considerations
B Acoustic conditions at deployment scenario / target use-case

M Room size / characteristics, echoes / feedback, background
noises

M Target sound variability
W Sensor placement PN i Frakee
M Recording procedure s

B Microphone type / setup

B (Background noise removal)
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Real-World Deployment
(2) Data Acquisition

B Preliminary considerations
B Acoustic conditions at deployment scenario / target use-case

M Room size / characteristics, echoes / feedback, background
noises

M Target sound variability
W Sensor placement PN i Frakee
M Recording procedure s
B Microphone type / setup
B (Background noise removal)

M Security / Privacy

M Data transmission / storage

© Jakob AbefBer, 2022



Real-World Deployment
(2) Data Acquisition

B Audio Recording
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Real-World Deployment
(2) Data Acquisition

B Audio Recording Polyphonic annotation
B Annotation W‘WW“WW
B Time / labor expensive Erawees] [
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B Contextual metadata (time, location, ...) DDDQD
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Real-World Deployment
(2) Data Acquisition

B Audio Recording Polyphonic annotation
B Annotation W‘WW“WW
B Time / labor expensive Erawees] [
. . [Fer speer)
B Contextual metadata (time, location, ...) DDDQD
. . O 0 O
B Granularity (segment vs. file-level) 00 O
W Subjectivity (annotator agreement)

W Use existing tools (e.g., Sonic Visualiser)
B Data split

420,072 ]
367.563

® Train / Validation / Test oy
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Real-World Deployment

(3) System Design & Implementation

B Goal — Proof-of-Concept (PoC)
W Solves defined problem

B Demonstrate capability / feasibility under laboratory
environment (datasets)




Real-World Deployment
(3) System Design & Implementation

B Goal — Proof-of-Concept (PoC)
W Solves defined problem

B Demonstrate capability / feasibility under laboratory
environment (datasets)

B Quickly implement baseline system (reference point)
W Iterative improvement of system components
B Audio processing (pre-processing, feature extraction)

® Machine learning (learning / recognition / detection)




Real-World Deployment

(4) System Evaluation

M Goal — Realistic performance estimate
M |deally test condition & target application are similar

B Compare to baseline system / state-of-the-art methods




Real-World Deployment

(4) System Evaluation

M Goal — Realistic performance estimate
M |deally test condition & target application are similar
B Compare to baseline system / state-of-the-art methods
B Incremental changes & evaluation

M |[dentify most important factors that influence the system’s
performance

B Evaluation
m Offline (pre-recorded audio) vs. online (real-time recordings)

M Objective (test dataset, defined metrics) vs. subjective (user tests)




Real-World Deployment

(5) Product Demonstration

B Goal — Develop PoC further into a Prototype
W Key features according to requirement analysis
M Tested in realistic use-cases (technology validation)

W Tested with real users (user experience / perception of good
performing system)




Real-World Deployment

(5) Product Demonstration

B Goal — Develop PoC further into a Prototype
W Key features according to requirement analysis
M Tested in realistic use-cases (technology validation)

W Tested with real users (user experience / perception of good
performing system)

W Iterative development until ready for deployment

B Problem examples: too high latency, too low noise-robustness
¥ Finally

W System integration (user interface etc.)

W Deployed to the market (small scale pilot -> full scale)




Real-World Deployment
Challenges

B Data Mismatch / Domain Shift
B Model Complexity
B Privacy / Security
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Real-World Deployment
(1) Data Mismatch / Domain Shift

m Differences in data distribution due to
B Room acoustics (reverb, reflections)
B Microphone characteristics (frequency response, directionality)
B Domain adaptation
B Adapt model / feature mapping from source to target domain
B Unsupervised: adversarial training [Gharib, 2018]
W Supervised: transfer learning
B Data augmentation
B Increase model robustness by increasing data variability
B Data normalization [Johnson, 2020] [Latifi, 2023]

B Align source and target data distributions




Real-World Deployment
(1) Data Mismatch / Domain Shift

B Domain adaptation (DA)

B Unsupervised DA via adversarial training [Gharib, 2018]

airport -JONUENONY

(g 0.0 0.22

metro 0.0

metro_station 0.06

% El® 0.0 0.06
§ public_square H 0.06
shopping_mall i 0.0
street_pedestrian . 0.0

street_traffic H 0.0

tram

0.19

0.28 0.39 0.03
0.36 0.0
0.22 0.0
047 0.17 0.06
0.33 0.25 0.03
0.08 - 0.0

0.39 047 0.0

0.03 0.19 0.08

0.39 0474 0.0

Predicted label

.XS—'[ Ms - C }—

labels

Pre-training

0.0

0.0

0.0

0.0

(X]

0.0

0.0

0.03

Acoustic scene

0.0
0.0
0.0
0.0
0.0 0.03
0.0 0.03
0.03 0.06 0.0
0.0 0.11 0.0
0‘03- 0.0

0.0 0.03 0.0




Real-World Deployment

(1) Data Mismatch / Domain Shift

B Domain adaptation (DA)

B Unsupervised DA via adversarial training [Gharib, 2018]
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Real-World Deployment
(1) Data Mismatch / Domain Shift

B Domain adaptation (DA)

B Unsupervised DA via adversarial training [Gharib, 2018]
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Real-World Deployment
(1) Data Mismatch / Domain Shift

B Data normalization

® Align source and target data distribution (zero mean & standard
deviations) [Johnson, 2020]

B Reduce domain shift

Metal ball surface
classification

(colors = classes,
shadings = recordings)

(b) Global Norm (c) Adaptive Norm




Real-World Deployment
(2) Model Complexity

m Goals
B Reduce model size — fewer parameters, less memory required

B Reduce latency (inference time) / lower energy consumption




Real-World Deployment
(2) Model Complexity

m Goals
B Reduce model size — fewer parameters, less memory required

B Reduce latency (inference time) / lower energy consumption

B Approaches ([Wang, 2021])
® Pruning

B |dentify & remove redundant connections / neurons

Before pruning After pruning

SIS v
synapses
Ne——N7
pruning
= neurons <~——
(a) Fig. 14




Real-World Deployment
(2) Model Complexity

W Approaches
B Quantization
B Reduce numeric precision while minimize information loss
W Ex.: 32-bit floating point -> 8-bit fixed point (256 values)

B Reduce memory footprint of network weights
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W Approaches
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M Low-rank tensor decompositions

B Replace (many) redundant filters by a linear combination of
fewer filters




Real-World Deployment
(2) Model Complexity

W Approaches
B Quantization
B Reduce numeric precision while minimize information loss
W Ex.: 32-bit floating point -> 8-bit fixed point (256 values)
B Reduce memory footprint of network weights
M Low-rank tensor decompositions

B Replace (many) redundant filters by a linear combination of
fewer filters

Pre-trained

® Transfer knowledge from TiESG

(a) _ Teacher network T

B Knowledge Distillation

Distillation loss

complex (teacher) to simpler ~ "aro L 8[jaws  [Coredicions |
(student) model " S 7. 0o




Real-World Deployment
(3) Privacy / Data Protection and Data Security

B Depending on the specific application, challenges include e.qg.

B Avoiding processing and storage of speech content and speaker
characteristics (person-related information)

B Ensuring authenticity of recordings, and recording time / location




Real-World Deployment
(3) Privacy / Data Protection and Data Security

B Depending on the specific application, challenges include e.qg.

B Avoiding processing and storage of speech content and speaker
characteristics (person-related information)

B Ensuring authenticity of recordings, and recording time / location

B Ensuring confidentiality of recordings, annotations and models
during storage, transmission and (sometimes) training

B Avoiding replay attacks




Real-World Deployment
(3) Privacy / Data Protection and Data Security

B Countermeasures
B Data anonymization (speech filtering / scrambling, etc.)

B Data authentication, encryption and key management (based on
security standards and cryptography)




Real-World Deployment
(3) Privacy / Data Protection and Data Security

B Countermeasures
B Data anonymization (speech filtering / scrambling, etc.)

B Data authentication, encryption and key management (based on
security standards and cryptography)

W Secure Federated Learning (incl. FHE and Differential Privacy)

® Replay detection




Application Scenarios
(1) Urban Noise Monitoring

W Joint R&D project (2016 — 2018)

® Fraunhofer IDMT, IMMS, SSJ GmbH, BE
B Goal

M Develop distributed sensor network for

B Sound level measurement

B Sound classification




Application Scenarios
(1) Urban Noise Monitoring

StadtLérm

L \\\— /]|

Fig. 16

W Joint R&D project (2016 — 2018)
® Fraunhofer IDMT, IMMS, SSJ GmbH, BE

m Goal
M Develop distributed sensor network for
B Sound level measurement
M Sound classification
B Approach

B Mobile sensor units

M Raspberry Pi 3, quad-core ARM, 1GB RAM
M Battery + MEMS microphones

M Sensor locations (light poles)




Application Scenarios
(1) Urban Noise Monitoring

B Measurements
B Different loudness values (8/s)
B Sound event detection (1/s)

B 9 sound event classes (car,
conversation, music, roadworks,
siren, train, tram, truck, wind)
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Application Scenarios
(1) Urban Noise Monitoring

[ SN

Stadtl.drm
[ \\\“™//]]

B Measurements

B Different loudness values (8/s)
B Sound event detection (1/s)

B 9 sound event classes (car,

conversation, music, roadworks,

siren, train, tram, truck, wind)
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Application Scenarios
(2) Traffic Monitoring

B Tasks

B Vehicle detection
B Direction of movement estimation
M Speed estimation

M Vehicle type classification

M Car, truck, bus, motorcycle etc.




Application Scenarios
(2) Traffic Monitoring

B Tasks

M Vehicle detection

M Direction of movement estimation
M Speed estimation

M Vehicle type classification

M Car, truck, bus, motorcycle etc.
B Challenges

M Microphone type
M Local acoustic conditions

M Vehicle speed

W Street surface quality & weather conditions




Application Scenarios
(2) Traffic Monitoring

B Audio Features

B Vehicle detection & direction
of movement & speed

B Channel cross-correlation
W Vehicle type classification

® Mel spectrogram

B Neural network architectures
(#parameters)

B CNNs (1,1 - 3,2 mio.)
B MobileNetMini (15,000)




Application Scenarios
(2) Traffic Monitoring

B Audio Features

_ _ Mel spectrogram
® Vehicle detection & direction

of movement & speed

Car
B Channel cross-correlation

W Vehicle type classification

B Mel spectrogram Truck

B Neural network architectures
(#parameters)

B CNNs (1,1 - 3,2 mio.)
B MobileNetMini (15,000)

® Example (truck, car, motorcycle)

Motorcycle

(e) MC, L—R, =~ 70 km/h, MS.

-
W 2s clips (IDMT-Traffic dataset)

Stereo channel
cross-correlation
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(f) MC, L—R, ~ 70 km/h, CC.




Application Scenarios
(3) Industrial Sound Analysis

B Challenges

M Real-time analysis &

classification of industrial
sounds

SENSOR DATA
FUSION

M Energy-efficient Al > —
algorithms

PREDICTIVE -

END-OF-LINE
MAINTENANCE . AcousTic 9 TESTING
. QUALITY
& ASSURANCE

B Sound variations due to
different machine states

B Acoustic anomalies subtle ™ .
compared to background

noises
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Application Scenarios
(3) Industrial Sound Analysis

B Example use-cases @ Industrial

Media Applications (Fraunhofer
IDMT)

Friction Stir Welding

Laser Ablation Machine B

© Jakob AbefBer, 2022



Application Scenarios
(4) Context-Sensitive Hearables

B Wireless earbuds, hearing aids

B Functionality

B Context-awareness

W Detect listeners location / activity (ASC)

M E.g.: At home, traffic, subway, restaurant, sport
B Detect relevant sound events (SED):

W E.g.: Siren, honking, scream




Application Scenarios
(4) Context-Sensitive Hearables

B Wireless earbuds, hearing aids

B Functionality

B Context-awareness

W Detect listeners location / activity (ASC)
M E.g.: At home, traffic, subway, restaurant, sport
B Detect relevant sound events (SED):

W E.g.: Siren, honking, scream
B Background noise reduction

B Dynamic volume adjustments

B (Immersive listening experience)




Application Scenarios
(5) Bioacoustic Monitoring

B Autonomous acoustic sensors
B Non-intrusive

® Allow for long-term recordings (days / weeks ...)

B Monitored species: birds, primates, bees, marine mammals, etc.




Application Scenarios
(5) Bioacoustic Monitoring

B Autonomous acoustic sensors

B Non-intrusive

® Allow for long-term recordings (days / weeks ...)

B Monitored species: birds, primates, bees, marine mammals, etc.
B Monitor

B Population sizes / migration patterns
® Challenges for SED

B High variability even within sounds classes

B Large amounts of unlabelled data (annotation requires expert
knowledge)

B Few-shot learning (DCASE 2021, task 5)




Application Scenarios
(5) Bioacoustic Monitoring

M Bird sound detection — detection / classification / counting

.
Carolina Wren

Dawn chorus
Flamingo (bird ensemble)

© Jakob AbefBer, 2022



Summary

B Acoustic Scene Classification
B Acoustic Anomaly Detection
B Real-World Deployment
M Process Steps
B Challenges
B Use-Cases
B Urban Noise Monitoring
B Traffic Monitoring
B Industrial Sound Analysis
B Context-sensitive Hearables

B Bioacoustic Monitoring




Computational Analysis of Sound and

Music

B Novel lecture in summer semester 2024!

Week Date 1 Date 2

1 Audio Audio
l. Foundations 2 Audio ML/DL

3 ML/DL ML/DL

4

5 Music Information Retrieval
Il. Applications 6

7

3 Environmental Sound Analysis

9 Intro / Topics Literature research

) 10 Datasets ML/DL pipeline

lll--Beseanch Projeck 11 Evaluation/metrics Visualization/Paper writing

12 Wrap-Up, Paper Deadline | Project presentation, Q/A
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