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Overview

n Acoustic Scene Classification

n Acoustic Anomaly Detection

n Real-World Deployment

n Process Steps

n Challenges

n Use-Cases

n Urban Noise Monitoring

n Traffic Monitoring

n Industrial Sound Analysis

n Context-sensitive Hearables

n Bioacoustic Monitoring
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Acoustic Scene Classification
Task

n Acoustic scene classification (ASC)

n Multi-class (1 of N) classification scenario 

n Summative label (tagging)

Fig. 1
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Acoustic Scene Classification
Task

n Acoustic scene classification (ASC)

n Multi-class (1 of N) classification scenario 

n Summative label (tagging)

n Acoustic scene

n Typical set of sounds

n Example: Office

n Keyboard clicks

n Human conversations

n Printer 

n Air conditioner

Fig. 1

Fig. 2

AUD-1
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Acoustic Scene Classification
Pipeline

n Label encoding

n One-hot-encoded (global) target

n Example

n 4 scene classes (bus, office, home, forest)

n Encoding of an office recording

Sound classes

[ 0  1  0  0 ]

Own
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Acoustic Scene Classification
Pipeline

n Network architectures

n Similar to SED (CNN & CRNN)

n Differences

n Temporal result aggregation within network

n Dense layer / pooling

n Final layer: Softmax activation function (multiclass classification)
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Acoustic Scene Classification
Pipeline

n Network architectures

n Similar to SED (CNN & CRNN)

n Differences

n Temporal result aggregation within network

n Dense layer / pooling

n Final layer: Softmax activation function (multiclass classification)

n Current Research Topics [Abeßer, 2020]

n Attention → learn to focus on spectrogram regions

n Open-set classification → detect unknown classes

n Transfer learning → fine-tune pre-trained models with less data 
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Acoustic Anomaly Detection
Task

n Goal

n Detect deviations from “normal” state

n Is emitted sound from target object 
normal or anomalous?

Fig. 3
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Acoustic Anomaly Detection
Task

n Goal

n Detect deviations from “normal” state

n Is emitted sound from target object 
normal or anomalous?

n Challenges

n Often only training examples for 
normal state available

n Acoustic anomalies are often subtle 
compared to louder background noise

n Application Scenarios 

n Detecting machine failures

n Intrusion detection (glass break…)

Fig. 3



© Jakob Abeßer, 2022 

Acoustic Anomaly Detection 
Approaches

n Traditional methods

n Distribution outlier detection

n Modelling normal state distribution 

n Detect distribution outliers

n E.g.: One-class GMM / SVM

Fig. 4
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Acoustic Anomaly Detection 
Approaches

n Traditional methods

n Distribution outlier detection

n Modelling normal state distribution 

n Detect distribution outliers

n E.g.: One-class GMM / SVM

n Time-series analysis

n AD via prediction error

n E.g.: Autoregressive models,           
Hidden-Markov-Models   (HMM)

Fig. 4

Fig. 5
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Acoustic Anomaly Detection 
Approaches

n Novel methods

n Autoencoder (encoder →
decoder) models

n Idea: 

n Normal sounds can be 
better reconstructed than 
anomalous sounds

x y

MSE

Encoder Decoder

Input Output

Embeddings

Own
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Acoustic Anomaly Detection 
Approaches

n Novel methods

n Autoencoder (encoder →
decoder) models

n Idea: 

n Normal sounds can be 
better reconstructed than 
anomalous sounds

n Dense, convolutional,              
variational AE

n Interpolation DNN

n Interpolate spectrogram           
frame from surrounding        
frames

x y

MSE

Encoder Decoder

Input Output

Embeddings

Own
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Real-World Deployment 
Project Phases

(1) Requirement Analysis

(2) Data Acquisition

(3) System Design & Implementation

(4) System Evaluation

(5) Product Demonstration

Own
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Real-World Deployment 
(1) Requirement Analysis

n Target application

n Research problem

n Relevant sound classes
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Real-World Deployment 
(1) Requirement Analysis

n Target application

n Research problem

n Relevant sound classes

n Performance requirements 

n Analysis window size 

n Metrics (accuracy, recall, precision, f-score, etc.)

n User Experience

n Error type categorization / prioritization



© Jakob Abeßer, 2022 

Real-World Deployment 
(1) Requirement Analysis (Example)

n Target application (context-aware cell phones)

n Main characteristics (ringtone type & loudness adapts to user’s 
environment)
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Real-World Deployment 
(1) Requirement Analysis (Example)

n Target application (context-aware cell phones)

n Main characteristics (ringtone type & loudness adapts to user’s 
environment)

n Research problem (acoustic scene classification)

n Relevant sound classes (at home, opera, traffic …)
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Real-World Deployment 
(1) Requirement Analysis (Example)

n Target application (context-aware cell phones)

n Main characteristics (ringtone type & loudness adapts to user’s 
environment)

n Research problem (acoustic scene classification)

n Relevant sound classes (at home, opera, traffic …)

n Performance requirements 

n Analysis window size (5s)

n Metrics (accuracy, recall, precision, f-score, etc.) (F > 0.85)
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Real-World Deployment 
(1) Requirement Analysis (Example)

n Target application (context-aware cell phones)

n Main characteristics (ringtone type & loudness adapts to user’s 
environment)

n Research problem (acoustic scene classification)

n Relevant sound classes (at home, opera, traffic …)

n Performance requirements 

n Analysis window size (5s)

n Metrics (accuracy, recall, precision, f-score, etc.) (F > 0.85)

n User Experience

n Error type categorization / prioritization

n (confusion opera ⟷ traffic worse than traffic ⟷ at home)
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Real-World Deployment 
(1) Requirement Analysis

n Performance constraints

n Computer platform (Raspberry 4, Jetson Nano, etc.)

n Memory, CPU / GPU performance

n Inference time vs. real-time

Rhaspberry 4

Jetson Nano

Fig. 6

Fig. 7
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Real-World Deployment 
(1) Requirement Analysis

n Performance constraints

n Computer platform (Raspberry 4, Jetson Nano, etc.)

n Memory, CPU / GPU performance

n Inference time vs. real-time

n Model constraints

n Architecture

n # Parameters

n # Layers

n Model size

n Floating-point resolution

Rhaspberry 4

Jetson Nano

Fig. 6

Fig. 7
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Real-World Deployment 
(2) Data Acquisition

n Preliminary considerations

n Acoustic conditions at deployment scenario / target use-case

n Room size / characteristics, echoes / feedback, background 
noises

n Target sound variability

Fig. 8
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Real-World Deployment 
(2) Data Acquisition

n Preliminary considerations

n Acoustic conditions at deployment scenario / target use-case

n Room size / characteristics, echoes / feedback, background 
noises

n Target sound variability

n Sensor placement

n Recording procedure

n Microphone type / setup 

n (Background noise removal)

Fig. 8
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Real-World Deployment 
(2) Data Acquisition

n Preliminary considerations

n Acoustic conditions at deployment scenario / target use-case

n Room size / characteristics, echoes / feedback, background 
noises

n Target sound variability

n Sensor placement

n Recording procedure

n Microphone type / setup 

n (Background noise removal)

n Security / Privacy

n Data transmission / storage

Fig. 8



© Jakob Abeßer, 2022 

Real-World Deployment 
(2) Data Acquisition

n Audio Recording

Fig. 9
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Real-World Deployment 
(2) Data Acquisition

n Audio Recording

n Annotation

n Time / labor expensive

n Contextual metadata (time, location, …)

n Granularity (segment vs. file-level)

n Subjectivity (annotator agreement)

n Use existing tools (e.g., Sonic Visualiser)

Fig. 9

Fig. 10
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Real-World Deployment 
(2) Data Acquisition

n Audio Recording

n Annotation

n Time / labor expensive

n Contextual metadata (time, location, …)

n Granularity (segment vs. file-level)

n Subjectivity (annotator agreement)

n Use existing tools (e.g., Sonic Visualiser)

n Data split 

n Train / Validation / Test

Fig. 9

Fig. 10
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Real-World Deployment 
(3) System Design & Implementation

n Goal → Proof-of-Concept (PoC)

n Solves defined problem

n Demonstrate capability / feasibility under laboratory 
environment (datasets)
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Real-World Deployment 
(3) System Design & Implementation

n Goal → Proof-of-Concept (PoC)

n Solves defined problem

n Demonstrate capability / feasibility under laboratory 
environment (datasets)

n Quickly implement baseline system (reference point)

n Iterative improvement of system components

n Audio processing (pre-processing, feature extraction)

n Machine learning (learning / recognition / detection)
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Real-World Deployment 
(4) System Evaluation

n Goal → Realistic performance estimate

n Ideally test condition & target application are similar

n Compare to baseline system / state-of-the-art methods
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Real-World Deployment 
(4) System Evaluation

n Goal → Realistic performance estimate

n Ideally test condition & target application are similar

n Compare to baseline system / state-of-the-art methods

n Incremental changes & evaluation

n Identify most important factors that influence the system’s 
performance

n Evaluation

n Offline (pre-recorded audio) vs. online (real-time recordings)

n Objective (test dataset, defined metrics) vs. subjective (user tests)
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Real-World Deployment 
(5) Product Demonstration

n Goal → Develop PoC further into a Prototype

n Key features according to requirement analysis

n Tested in realistic use-cases (technology validation) 

n Tested with real users (user experience / perception of good 
performing system)
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Real-World Deployment 
(5) Product Demonstration

n Goal → Develop PoC further into a Prototype

n Key features according to requirement analysis

n Tested in realistic use-cases (technology validation) 

n Tested with real users (user experience / perception of good 
performing system)

n Iterative development until ready for deployment

n Problem examples: too high latency, too low noise-robustness

n Finally

n System integration (user interface etc.)

n Deployed to the market (small scale pilot -> full scale)
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Real-World Deployment 
Challenges

n Data Mismatch / Domain Shift

n Model Complexity

n Privacy / Security
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Real-World Deployment 
(1) Data Mismatch / Domain Shift

n Differences in data distribution due to 

n Room acoustics (reverb, reflections)

n Microphone characteristics (frequency response, directionality)
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Real-World Deployment 
(1) Data Mismatch / Domain Shift

n Differences in data distribution due to 

n Room acoustics (reverb, reflections)

n Microphone characteristics (frequency response, directionality)

n Domain adaptation

n Adapt model / feature mapping from source to target domain

n Unsupervised: adversarial training [Gharib, 2018]

n Supervised: transfer learning 



© Jakob Abeßer, 2022 

Real-World Deployment 
(1) Data Mismatch / Domain Shift

n Differences in data distribution due to 

n Room acoustics (reverb, reflections)

n Microphone characteristics (frequency response, directionality)

n Domain adaptation

n Adapt model / feature mapping from source to target domain

n Unsupervised: adversarial training [Gharib, 2018]

n Supervised: transfer learning 

n Data augmentation

n Increase model robustness by increasing data variability

n Data normalization [Johnson, 2020] [Latifi, 2023]

n Align source and target data distributions
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n Domain adaptation (DA)

n Unsupervised DA via adversarial training [Gharib, 2018]

Real-World Deployment 
(1) Data Mismatch / Domain Shift

Fig. 11

Fig. 12
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n Domain adaptation (DA)

n Unsupervised DA via adversarial training [Gharib, 2018]

Real-World Deployment 
(1) Data Mismatch / Domain Shift
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n Data normalization

n Align source and target data distribution (zero mean & standard 
deviations) [Johnson, 2020]

n Reduce domain shift

Real-World Deployment 
(1) Data Mismatch / Domain Shift

Metal ball surface 
classification 
(colors = classes, 
shadings = recordings)

Fig. 13
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Real-World Deployment 
(2) Model Complexity

n Goals

n Reduce model size – fewer parameters, less memory required

n Reduce latency (inference time) / lower energy consumption
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Real-World Deployment 
(2) Model Complexity

n Goals

n Reduce model size – fewer parameters, less memory required

n Reduce latency (inference time) / lower energy consumption

n Approaches ([Wang, 2021])

n Pruning

n Identify & remove redundant connections / neurons

Fig. 14
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Real-World Deployment 
(2) Model Complexity

n Approaches

n Quantization

n Reduce numeric precision while minimize information loss

n Ex.: 32-bit floating point -> 8-bit fixed point (256 values)

n Reduce memory footprint of network weights
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Real-World Deployment 
(2) Model Complexity

n Approaches

n Quantization

n Reduce numeric precision while minimize information loss

n Ex.: 32-bit floating point -> 8-bit fixed point (256 values)

n Reduce memory footprint of network weights

n Low-rank tensor decompositions

n Replace (many) redundant filters by a linear combination of 
fewer filters
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Real-World Deployment 
(2) Model Complexity

n Approaches

n Quantization

n Reduce numeric precision while minimize information loss

n Ex.: 32-bit floating point -> 8-bit fixed point (256 values)

n Reduce memory footprint of network weights

n Low-rank tensor decompositions

n Replace (many) redundant filters by a linear combination of 
fewer filters

n Knowledge Distillation

n Transfer knowledge from                                                  
complex (teacher) to simpler                                          
(student) model

Fig. 15
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Real-World Deployment 
(3) Privacy / Data Protection and Data Security

n Depending on the specific application, challenges include e.g.

n Avoiding processing and storage of speech content and speaker 
characteristics (person-related information)

n Ensuring authenticity of recordings, and recording time / location
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Real-World Deployment 
(3) Privacy / Data Protection and Data Security

n Depending on the specific application, challenges include e.g.

n Avoiding processing and storage of speech content and speaker 
characteristics (person-related information)

n Ensuring authenticity of recordings, and recording time / location

n Ensuring confidentiality of recordings, annotations and models 
during storage, transmission and (sometimes) training

n Avoiding replay attacks
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Real-World Deployment 
(3) Privacy / Data Protection and Data Security

n Countermeasures

n Data anonymization (speech filtering / scrambling, etc.)

n Data authentication, encryption and key management (based on 
security standards and cryptography)
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Real-World Deployment 
(3) Privacy / Data Protection and Data Security

n Countermeasures

n Data anonymization (speech filtering / scrambling, etc.)

n Data authentication, encryption and key management (based on 
security standards and cryptography)

n Secure Federated Learning (incl. FHE and Differential Privacy)

n Replay detection
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n Joint R&D project (2016 – 2018)

n Fraunhofer IDMT, IMMS, SSJ GmbH, BE 

n Goal

n Develop distributed sensor network for

n Sound level measurement

n Sound classification

Application Scenarios
(1) Urban Noise Monitoring

Fig. 16

Fig. 17
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n Joint R&D project (2016 – 2018)

n Fraunhofer IDMT, IMMS, SSJ GmbH, BE 

n Goal

n Develop distributed sensor network for

n Sound level measurement

n Sound classification

n Approach

n Mobile sensor units

n Raspberry Pi 3, quad-core ARM, 1GB RAM

n Battery + MEMS microphones

n Sensor locations (light poles)

Application Scenarios
(1) Urban Noise Monitoring

Fig. 16

Fig. 17

Fig. 18
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n Measurements

n Different loudness values (8/s)

n Sound event detection (1/s)

n 9 sound event classes (car, 
conversation, music, roadworks, 
siren, train, tram, truck, wind)

Application Scenarios
(1) Urban Noise Monitoring

Spectrogram 
examples (2 s long)

Fig. 19
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n Measurements

n Different loudness values (8/s)

n Sound event detection (1/s)

n 9 sound event classes (car, 
conversation, music, roadworks, 
siren, train, tram, truck, wind)

Application Scenarios
(1) Urban Noise Monitoring

Spectrogram 
examples (2 s long)

n CNN architecture

Fig. 19 Fig. 20
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n Tasks

n Vehicle detection

n Direction of movement estimation

n Speed estimation

n Vehicle type classification 

n Car, truck, bus, motorcycle etc. 

Application Scenarios
(2) Traffic Monitoring

R_
L

sE
8

Fig. 21
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n Tasks

n Vehicle detection

n Direction of movement estimation

n Speed estimation

n Vehicle type classification 

n Car, truck, bus, motorcycle etc. 

n Challenges 

n Microphone type

n Local acoustic conditions

n Vehicle speed

n Street surface quality & weather conditions

Application Scenarios
(2) Traffic Monitoring

R_
L

sE
8

Fig. 21

Fig. 22
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n Audio Features

n Vehicle detection & direction 
of movement & speed

n Channel cross-correlation

n Vehicle type classification

n Mel spectrogram 

n Neural network architectures 
(#parameters)

n CNNs (1,1 – 3,2 mio.)

n MobileNetMini (15,000)

Application Scenarios
(2) Traffic Monitoring

R_
L

sE
8
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n Audio Features

n Vehicle detection & direction 
of movement & speed

n Channel cross-correlation

n Vehicle type classification

n Mel spectrogram 

n Neural network architectures 
(#parameters)

n CNNs (1,1 – 3,2 mio.)

n MobileNetMini (15,000)

n Example (truck, car, motorcycle)

n 2s clips (IDMT-Traffic dataset)

Application Scenarios
(2) Traffic Monitoring

R_
L

sE
8

Car

Truck

Motorcycle

Mel spectrogram
Stereo channel 

cross-correlation

Fig. 23
AUD-2
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n Challenges

n Real-time analysis & 
classification of industrial 
sounds

n Energy-efficient AI 
algorithms

n Sound variations due to 
different machine states

n Acoustic anomalies subtle 
compared to background 
noises

Application Scenarios
(3) Industrial Sound Analysis

Fig. 24
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n Example use-cases @ Industrial 
Media Applications (Fraunhofer 
IDMT)

Application Scenarios
(3) Industrial Sound Analysis

Compressed Air Leakage Detection

Friction Stir Welding

Laser Ablation Machine

Fig. 25

Fig. 26

Fig. 27
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n Wireless earbuds, hearing aids

n Functionality

n Context-awareness

n Detect listeners location / activity (ASC)

n E.g.: At home, traffic, subway, restaurant, sport

n Detect relevant sound events (SED): 

n E.g.: Siren, honking, scream 

Application Scenarios
(4) Context-Sensitive Hearables
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n Wireless earbuds, hearing aids

n Functionality

n Context-awareness

n Detect listeners location / activity (ASC)

n E.g.: At home, traffic, subway, restaurant, sport

n Detect relevant sound events (SED): 

n E.g.: Siren, honking, scream 

n Background noise reduction

n Dynamic volume adjustments

n (Immersive listening experience)

Application Scenarios
(4) Context-Sensitive Hearables
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n Autonomous acoustic sensors 

n Non-intrusive

n Allow for long-term recordings (days / weeks …)

n Monitored species: birds, primates, bees, marine mammals, etc.

Application Scenarios
(5) Bioacoustic Monitoring
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n Autonomous acoustic sensors 

n Non-intrusive

n Allow for long-term recordings (days / weeks …)

n Monitored species: birds, primates, bees, marine mammals, etc.

n Monitor

n Population sizes / migration patterns

n Challenges for SED

n High variability even within sounds classes 

n Large amounts of unlabelled data (annotation requires expert 
knowledge)

n Few-shot learning (DCASE 2021, task 5)

Application Scenarios
(5) Bioacoustic Monitoring
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n Bird sound detection → detection / classification / counting

Application Scenarios
(5) Bioacoustic Monitoring

AUD-3

Carolina Wren
Fig. 28

Fig. 29Flamingo

AUD-4 AUD-5
Dawn chorus 

(bird ensemble)
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Summary

n Acoustic Scene Classification

n Acoustic Anomaly Detection

n Real-World Deployment

n Process Steps

n Challenges

n Use-Cases

n Urban Noise Monitoring

n Traffic Monitoring

n Industrial Sound Analysis

n Context-sensitive Hearables

n Bioacoustic Monitoring
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Computational Analysis of Sound and 
Music
n Novel lecture in summer semester 2024!
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Fig. 17: [Abeßer, 2019], p. 2, fig. 2

Fig. 18: [Abeßer, 2018], p. 3, fig. 2

Fig. 19: [Abeßer, 2019], p.3, fig. 3

Fig. 20: [Abeßer, 2018], p.5, fig. 4

Fig. 21 & 22: [Abeßer, 2021], p.3, fig. 1, (b, c, d) source images

Fig. 23: [Abeßer, 2021], p.3, fig. 2

Fig. 24-27: Fraunhofer IDMT

Fig. 28: https://www.allaboutbirds.org/guide/assets/photo/304470861-1280px.jpg

Fig. 29: https://cdn.download.ams.birds.cornell.edu/api/v1/asset/54167691/1800
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Sounds

AUD-1: https://freesound.org/people/16HPanskaTyllova_Terezie/sounds/497363

AUD-2: Three clips from IDMT-Traffic dataset [Abeßer, 2021]

AUD-3: https://freesound.org/people/IFartInUrGeneralDirection/sounds/96195/ 

AUD-4: https://freesound.org/people/InspectorJ/sounds/400860/

AUD-5: https://freesound.org/people/Simon%20Spiers/sounds/516876/
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Thank you!

n Any questions?

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de


