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Overview

n Pitch Detection

n Instrument Recognition

n Source Separation
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Pitch Detection
Introduction

n Pitch

n Perceptual sound attribute

n Allows ordering from low to high in a frequency-related scale

n Two subtasks

Melody

No melody

1) Pitch detection

2) Voicing detection

Fig. 1
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Pitch Detection
Application Scenarios

n Music Instrument Tuning

n Music Education

n Music Transcription

n Bird Recognition

Fig. 2 Fig. 3 Fig. 4
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Pitch Detection
Tasks

n Pitch detection of isolated monophonic instruments
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Pitch Detection
Tasks

n Pitch detection of isolated monophonic instruments

n Predominant melody extraction in polyphonic music

n Polyphonic melody extraction

Increasing Difficulty
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n MELODIA [Salamon & Gomez, 2012]

n Melody Extraction from polyphonic audio

n Steps

n Sinusoid Extraction

n Equal loudness filter

n STFT

n Detection of predominant peaks

n Frequency refinement via 
instantaneous frequency (IF)

Pitch Detection
Traditional Methods

Sinusoid Extraction

Audio Signal
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n Salience Function

n Harmonic summation

n Sum over possibile harmonic
frequencies

Pitch Detection
Traditional Methods

Sinusoid Extraction

Salience Function

Audio Signal

Fig. 5
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n Salience Function

n Harmonic summation 

n Sum over possibile harmonic 
frequencies 

n Frequencies → pitch candidates

Pitch Detection
Traditional Methods

Sinusoid Extraction

Salience Function

Audio Signal

Fig. 5 Own
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n Pitch contour creation

n Auditory streaming cues → group peaks 
to continuous paths (pitch contours)

Pitch Detection
Traditional Methods

Sinusoid Extraction

Salience Function

Pitch Contour Creation

Audio Signal

Pitch contour(s)

Own
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n Pitch contour creation & melody selection

n Auditory streaming cues → group peaks 
to continuous paths (pitch contours)

n Select melody contours using features 
(e.g. average pitch / salience, vibrato)
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n Pitch contour creation & melody selection

n Auditory streaming cues → group peaks 
to continuous paths (pitch contours)

n Select melody contours using features 
(e.g. average pitch / salience, vibrato)

n Note formation (one pitch value)

Pitch Detection
Traditional Methods

Sinusoid Extraction

Salience Function

Pitch Contour Creation

Melody Selection

Audio Signal

Pitch contour(s)

Note events

Own
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n Melodia plugin available for Sonic Visualiser

Pitch Detection
Traditional Methods (Melodia)

Fig. 6
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n CREPE (Convolutional Representation for Pitch Estimation) [Kim et al., 2018]

n Monophonic pitch tracker

Pitch Detection
Novel Methods

Fig. 7
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n CREPE (Convolutional Representation for Pitch Estimation) [Kim et al., 2018]

n Monophonic pitch tracker

n End-to-end modeling

n Audio samples → pitch likelihoods

n 20 cent resolution (5 pitch bins per semitones)

Pitch Detection
Novel Methods

Fig. 7
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n Auto-encoder structure (U-Net) [Hsieh et al., 2019]

n Time-frequency representations (2D) → pitch saliency map (2D)

Pitch Detection
Novel Methods
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n Auto-encoder structure (U-Net) [Hsieh et al., 2019]

n Time-frequency representations (2D) → pitch saliency map (2D)

n (Bottleneck) embedding encodes pitch voicing (melody activity)

Pitch Detection
Novel Methods

Fig. 8
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n Music ensembles include multiple instruments

n Sound production (string / wind / brass / drum instruments)

n Instrument construction

Instrument Recognition
Introduction
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n Music ensembles include multiple instruments

n Sound production (string / wind / brass / drum instruments)

n Instrument construction

n Overlapping sound sources (solo recording vs. orchestra)

n Unison (same pitch)

n Harmonic intervals (overtone overlap)

n Rhythmic interconnection (note attacks overlap)

n Classification on different taxonomy levels

n Woodwind instruments → saxophone → tenor saxophone

Instrument Recognition
Introduction
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Instrument Recognition
Tasks

n Sorted by increasing complexity/difficulty

n Instrument recognition of isolated note recordings
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Instrument Recognition
Tasks

n Sorted by increasing complexity/difficulty

n Instrument recognition of isolated note recordings

n Instrument recognition on isolated instrument tracks

n Predominant instrument recognition in ensemble recordings

n Polyphonic instrument recognition (classify all instruments)

Increasing Difficulty
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n Multiple categories of audio features 
[Grasis et al., 2014]

n Frame-level (e.g., spectral flux & 
flatness)

n Overtone-level (e.g., 
modulation rate & frequency)

n Note-event level (e.g., 
magnitude ratios of overtones)

Instrument Recognition
Traditional Methods

Piano

Trumpet

Fig. 9
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n Multiple categories of audio features 
[Grasis et al., 2014]

n Frame-level (e.g., spectral flux & 
flatness)

n Overtone-level (e.g., 
modulation rate & frequency)

n Note-event level (e.g., 
magnitude ratios of overtones)

n Examples (trumpet / piano)

n Partial envelops 

n Observe magnitude decay & 
modulation

Instrument Recognition
Traditional Methods

Piano

Trumpet

Fig. 9
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n Mel spectrogram + CNN model [Han et al., 2017]

n Front-end: Convolutional layers & pooling operations

n Back-end: Dense classification layers

Instrument Recognition
Novel Methods

Fig. 10
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n Separability of instrument classes in the feature space

n Improves for deeper layers

Instrument Recognition
Novel Methods
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n Separability of instrument classes in the feature space

n Improves for deeper layers

n Example

n 2D visualization of multi-dimensional feature space

Instrument Recognition
Novel Methods

Deeper layers

Fig. 11
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n Pitch-Informed Frame-level Instrument 
Recognition [Hung & Yang, 2018]

Instrument Recognition
Novel Methods
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n Pitch-Informed Frame-level Instrument 
Recognition [Hung & Yang, 2018]

n Combine two input branches 

n Spectral input features 
(CQT) 

n Pitch-activity (piano-roll)

Instrument Recognition
Novel Methods

Fig. 12
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n Music recordings

n Mixtures of different 
musical instruments
(sources) playing
simultaneously

Source Separation
Introduction

Fig. 18
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n Music recordings 

n Mixtures of different 
musical instruments 
(sources) playing 
simultaneously

n Sound Separation

n Reverse engineering 
the audio mixing 
process

n Output: 1 stem per 
instrument

Source Separation
Introduction

Fig. 18
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n Audio mix is influenced by

n Instrument characteristics (timbre, note decay, …)

Source Separation
Introduction

Fig. 13



© Jakob Abeßer, 2022 

n Audio mix is influenced by

n Instrument characteristics (timbre, note decay, …)

n Musical performance (timing, dynamics, playing techniques, …)

Source Separation
Introduction

Fig. 13



© Jakob Abeßer, 2022 

n Audio mix is influenced by

n Instrument characteristics (timbre, note decay, …)

n Musical performance (timing, dynamics, playing techniques, …)

n Recording chain (microphones, room acoustics)

Source Separation
Introduction

Fig. 13



© Jakob Abeßer, 2022 

n Audio mix is influenced by

n Instrument characteristics (timbre, note decay, …)

n Musical performance (timing, dynamics, playing techniques, …)

n Recording chain (microphones, room acoustics)

n Post-processing (effects, mastering, DAW mix)

Source Separation
Introduction

Fig. 13
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n Audio remixing

n Audio upmixing

n Mono → stereo

n Stereo → 5.1

Source Separation
Application Scenarios
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n Audio remixing

n Audio upmixing 

n Mono → stereo

n Stereo → 5.1

n Music Analysis

n Transcription, beat tracking, harmony analysis etc. 

n Music Education

n Solo / Backing track generation

Source Separation
Application Scenarios
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n Harmonic/percussive separation

n H → stable harmonic components 
(fundamental frequency, overtones)

n P → transient components (drum sounds, 
note attacks)

Source Separation
Tasks
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n S → predominant melody instrument

n A → accompanying instruments
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n Harmonic/percussive separation

n H → stable harmonic components 
(fundamental frequency, overtones)

n P → transient components (drum sounds, 
note attacks)

n Solo/accompaniment separation

n S → predominant melody instrument

n A → accompanying instruments

n Singing voice separation

n S → singing voice (male / female)

n A → band
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n Harmonic/percussive (H/P) separation

n Different spectral characteristics of harmonic and percussive 
signals

Source Separation
Traditional Approaches
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Source Separation
Traditional Approaches

Fig. 14

FMP Notebooks
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Source Separation
Traditional Approaches

n Phase-based H/P separation

n Harmonic sources → phase change values are predictable

n Percussive sources → unpredictable phase (noise-like 
characteristics)
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Source Separation
Traditional Approaches

n Phase-based H/P separation

n Harmonic sources → phase change values are predictable

n Percussive sources → unpredictable phase (noise-like 
characteristics)

n Instantaneous Frequency Distribution (IFD) 

n How does phase change over time?

Instantaeneous
Frequency

Unwrapped 
phase

k – Frequency bin

n – Time frame
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Source Separation
Traditional Approaches

n Phase-based H/P separation

n Harmonic mask → phase change within range / predictable?
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Source Separation
Traditional Approaches

n Phase-based H/P separation

n Harmonic mask → phase change within range / predictable?

n Percussive mask
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Source Separation
Traditional Approaches

Own

Templates

Activations
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Source Separation
Traditional Approaches

Fig. 19
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Source Separation
Traditional Approaches
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n U-Net based [Jannson et al., 
2017]

n Input → magnitude 
spectrogram (mix)

n Output →
2 soft masks (voice / 
others)

Source Separation
Novel Approaches

Encoder Decoder

Skip Connections

Fig. 15
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n U-Net based [Jannson et al., 
2017]

n Input → magnitude 
spectrogram (mix)

n Output →
2 soft masks (voice / 
others)

n Issue

n Only magnitude of 
STFT is modeled

n Still phase from the 
mixture is used

Source Separation
Novel Approaches

Encoder Decoder

Skip Connections

Fig. 15
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n Spleeter [Hennequin et al., 2020]

n Open-source version for MIR research

Source Separation
Novel Approaches
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n Spleeter [Hennequin et al., 2020]

n Open-source version for MIR research

n 3 pre-trained models

n 2 stems (vocals and accompaniments)

n 4 stems (vocals, drums, bass, and other) 

n 5 stems (vocals, drums, bass, piano and other)

Source Separation
Novel Approaches

Spleeter Demo
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n Conv-TasNet [Luo & Mesgarani, 2019]

n Time-domain speech separation network (end-to-end)

Source Separation
Novel Approaches

Fig. 16
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n Conv-TasNet [Luo & Mesgarani, 2019]

n Time-domain speech separation network (end-to-end)

n Encoder → optimized representation for speaker separation

n Seperation → masks (weighting functions)

n Decoder → invert to waveforms

n Temporal convolutional networks (TCN)

n Stack of 1-D dilated convolutional blocks

n Large receptive field → model long-term dependencies

Source Separation
Novel Approaches

Fig. 16



© Jakob Abeßer, 2022 

n Conv-TasNet [Luo & Mesgarani, 2019]

Source Separation
Novel Approaches

Fig. 17
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Summary

n Case Studies

n Pitch Detection

n Instrument Recognition

n Source Separation
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Sounds

AUD-1: Aislinn – Capclear (2013), https://freemusicarchive.org/music/Aislinn/Aislinn/10_-_Aislinn_-_Capclear

AUD-2: Aislinn – Fourteen Days (2013), https://freemusicarchive.org/music/Aislinn/Aislinn/11_-_Aislinn_-
_Fourteen_days

AUD-3: Anonymous Choir – Amicus Meus (2009), 
https://freemusicarchive.org/music/Anonymous_Choir/Toms_Luis_de_Victorias_Amicus_Meus/Amicus_Meus
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Thank you!

n Any questions?

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de


