Machine Listening for Music and Sound Analysis

Lecture 4 – Music Information Retrieval II

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

Overview

- Pitch Detection
- Instrument Recognition
- Source Separation

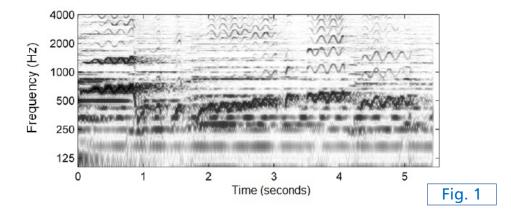
Pitch

- Perceptual sound attribute
- Allows ordering from low to high in a frequency-related scale

Pitch

- Perceptual sound attribute
- Allows ordering from low to high in a frequency-related scale

Two subtasks



Pitch

- Perceptual sound attribute
- Allows ordering from low to high in a frequency-related scale

0

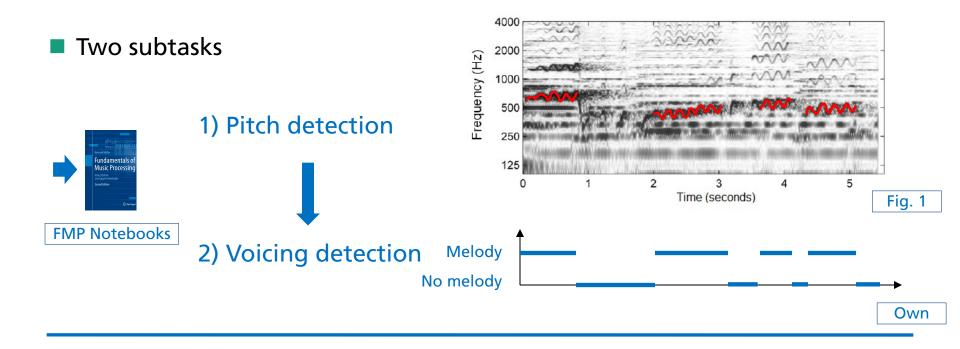
5

Fig. 1

Time (seconds)

Pitch

- Perceptual sound attribute
- Allows ordering from low to high in a frequency-related scale



Pitch Detection

Application Scenarios

- Music Instrument Tuning
- Music Education
- Music Transcription
- Bird Recognition

Pitch Detection Tasks

Pitch detection of isolated monophonic instruments

Pitch Detection Tasks

Pitch detection of isolated monophonic instruments

Predominant melody extraction in polyphonic music

Pitch Detection Tasks

Pitch detection of isolated monophonic instruments

Predominant melody extraction in polyphonic music

Polyphonic melody extraction

Increasing Difficulty

- MELODIA [Salamon & Gomez, 2012]
 - Melody Extraction from polyphonic audio

Steps

- Sinusoid Extraction
 - Equal loudness filter
 - STFT
 - Detection of predominant peaks
 - Frequency refinement via instantaneous frequency (IF)

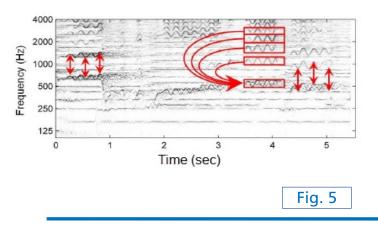
Audio Signal

Sinusoid Extraction

- Salience Function
 - Harmonic summation
 - Sum over possibile harmonic frequencies

Audio Signal

Sinusoid Extraction



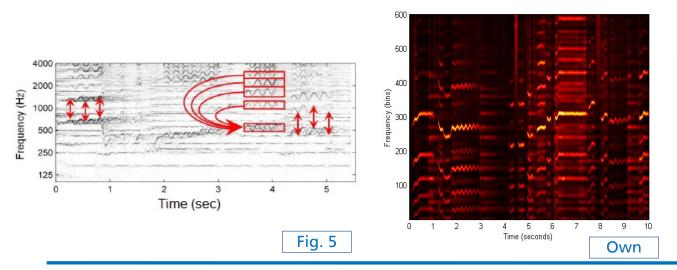
Pitch Detection

Traditional Methods

- Salience Function
 - Harmonic summation
 - Sum over possibile harmonic frequencies
 - Frequencies \rightarrow pitch candidates

Audio Signal

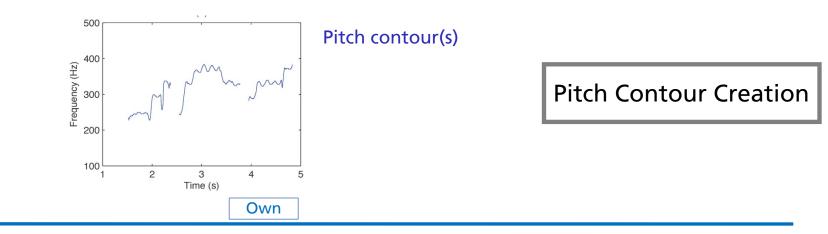
Sinusoid Extraction



Pitch contour creation

■ Auditory streaming cues → group peaks to continuous paths (pitch contours) Audio Signal

Sinusoid Extraction

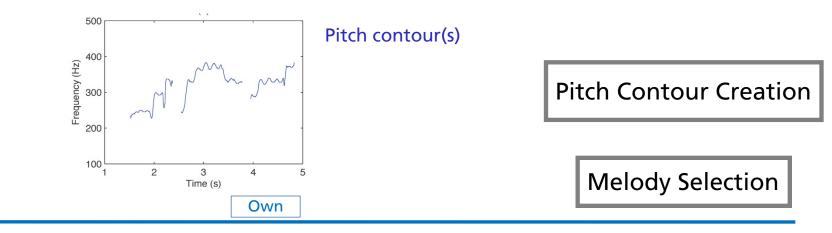


Pitch contour creation & melody selection

- Auditory streaming cues → group peaks to continuous paths (pitch contours)
- Select melody contours using features (e.g. average pitch / salience, vibrato)

Audio Signal

Sinusoid Extraction

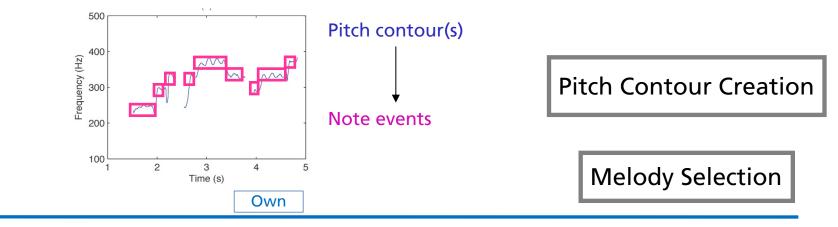


Pitch contour creation & melody selection

- Auditory streaming cues → group peaks to continuous paths (pitch contours)
- Select melody contours using features (e.g. average pitch / salience, vibrato)
- Note formation (one pitch value)

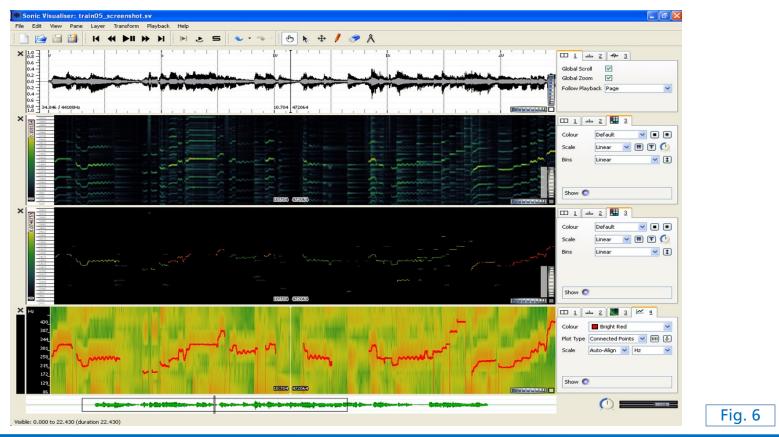
Audio Signal

Sinusoid Extraction



Pitch Detection Traditional Methods (Melodia)

Melodia plugin available for Sonic Visualiser



CREPE (Convolutional Representation for Pitch Estimation) [Kim et al., 2018]

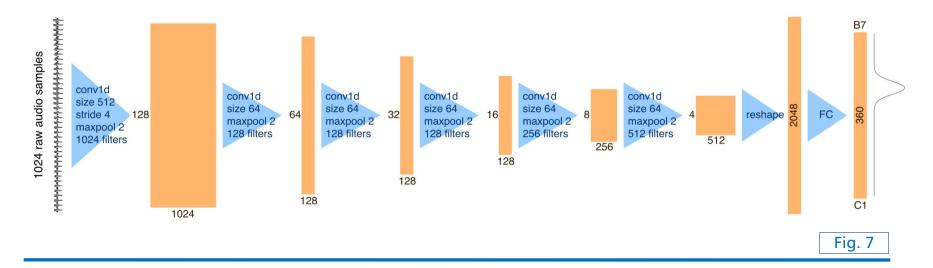
Monophonic pitch tracker

CREPE (Convolutional Representation for Pitch Estimation) [Kim et al., 2018]

- Monophonic pitch tracker
- End-to-end modeling

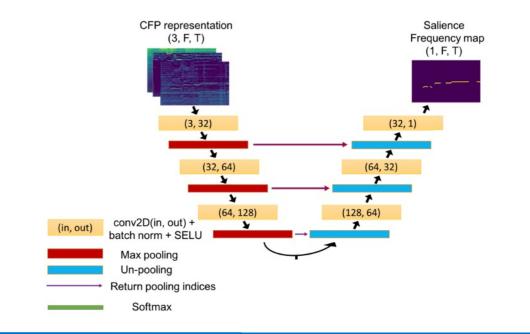
■ Audio samples → pitch likelihoods

20 cent resolution (5 pitch bins per semitones)

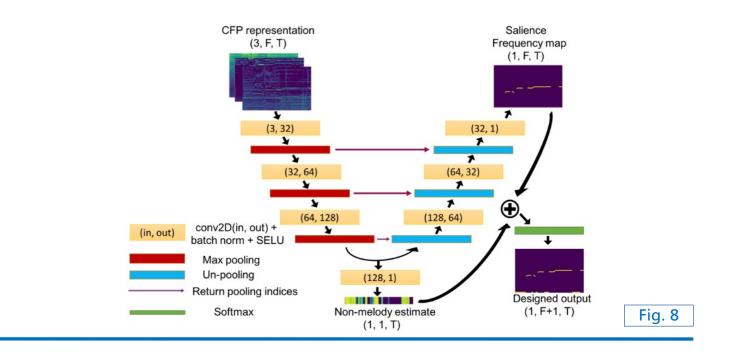


Auto-encoder structure (U-Net) [Hsieh et al., 2019]

Time-frequency representations (2D) \rightarrow pitch saliency map (2D)



- Auto-encoder structure (U-Net) [Hsieh et al., 2019]
 - **Time-frequency representations (2D)** \rightarrow pitch saliency map (2D)
 - (Bottleneck) embedding encodes pitch voicing (melody activity)



Instrument Recognition Introduction

Music ensembles include multiple instruments

- Sound production (string / wind / brass / drum instruments)
- Instrument construction

Instrument Recognition Introduction

Music ensembles include multiple instruments

- Sound production (string / wind / brass / drum instruments)
- Instrument construction
- Overlapping sound sources (solo recording vs. orchestra)
 - Unison (same pitch)
 - Harmonic intervals (overtone overlap)
 - Rhythmic interconnection (note attacks overlap)

Instrument Recognition Introduction

Music ensembles include multiple instruments

- Sound production (string / wind / brass / drum instruments)
- Instrument construction
- Overlapping sound sources (solo recording vs. orchestra)
 - Unison (same pitch)
 - Harmonic intervals (overtone overlap)
 - Rhythmic interconnection (note attacks overlap)
- Classification on different taxonomy levels
 - Woodwind instruments \rightarrow saxophone \rightarrow tenor saxophone

Sorted by increasing complexity/difficulty

Instrument recognition of isolated note recordings

- Sorted by increasing complexity/difficulty
 - Instrument recognition of isolated note recordings
 - Instrument recognition on isolated instrument tracks

Sorted by increasing complexity/difficulty

Instrument recognition of isolated note recordings

Instrument recognition on isolated instrument tracks

Predominant instrument recognition in ensemble recordings

Sorted by increasing complexity/difficulty

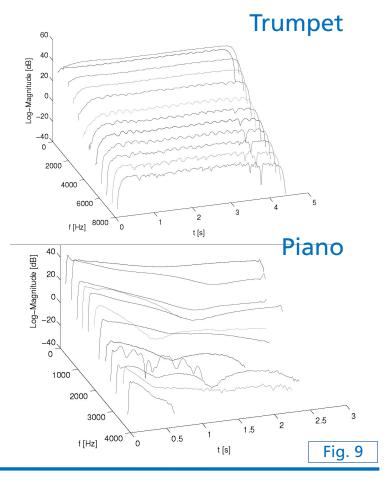
Instrument recognition of isolated note recordings

- Instrument recognition on isolated instrument tracks
- Predominant instrument recognition in ensemble recordings
- Polyphonic instrument recognition (classify all instruments)

Increasing Difficulty

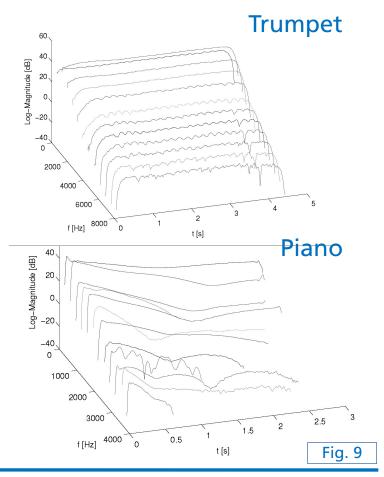
Instrument Recognition Traditional Methods

- Multiple categories of audio features [Grasis et al., 2014]
 - Frame-level (e.g., spectral flux & flatness)
 - Overtone-level (e.g., modulation rate & frequency)
 - Note-event level (e.g., magnitude ratios of overtones)



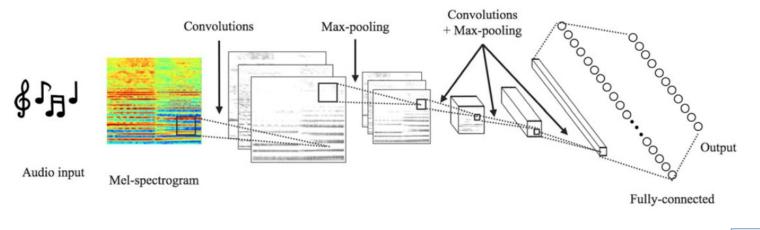
Instrument Recognition Traditional Methods

- Multiple categories of audio features [Grasis et al., 2014]
 - Frame-level (e.g., spectral flux & flatness)
 - Overtone-level (e.g., modulation rate & frequency)
 - Note-event level (e.g., magnitude ratios of overtones)
- Examples (trumpet / piano)
 - Partial envelops
 - Observe magnitude decay & modulation



Mel spectrogram + CNN model [Han et al., 2017]

- Front-end: Convolutional layers & pooling operations
- Back-end: Dense classification layers

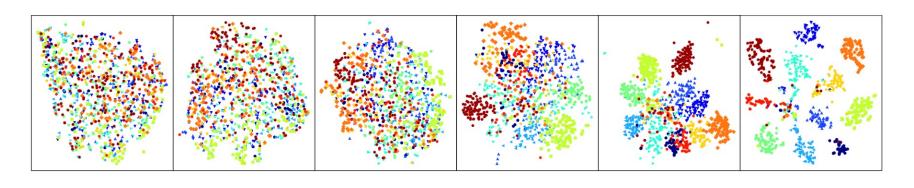


Separability of instrument classes in the feature space

Improves for deeper layers

Separability of instrument classes in the feature space

- Improves for deeper layers
- Example
 - 2D visualization of multi-dimensional feature space



Deeper layers

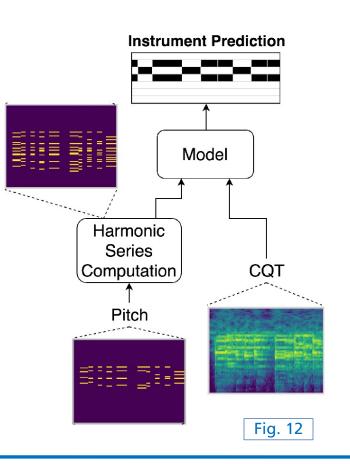
Fig. 11

Pitch-Informed Frame-level Instrument Recognition [Hung & Yang, 2018]

Pitch-Informed Frame-level Instrument Recognition [Hung & Yang, 2018]

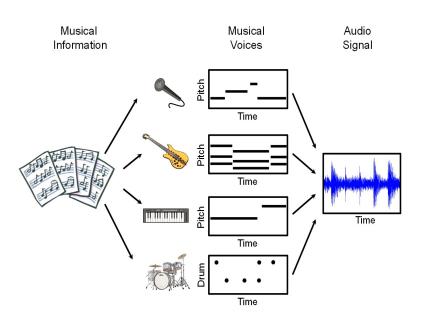
- Combine two input branches
 - Spectral input features (CQT)

Pitch-activity (piano-roll)

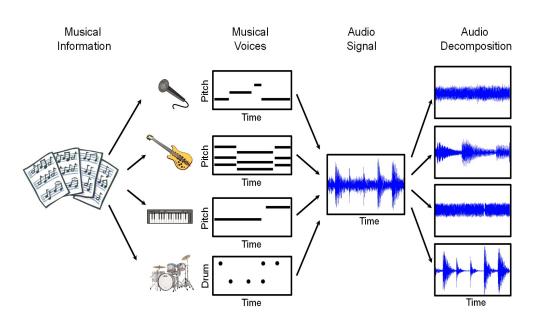


Source Separation

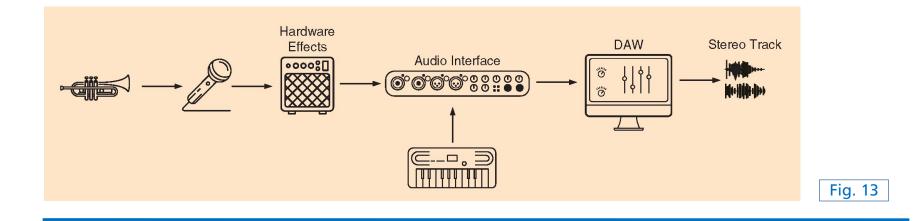
- Music recordings
 - Mixtures of different musical instruments (sources) playing simultaneously



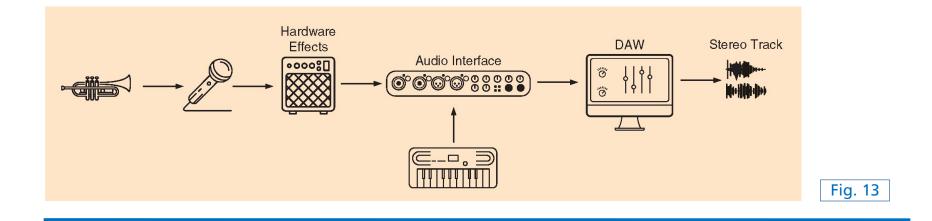
- Music recordings
 - Mixtures of different musical instruments (sources) playing simultaneously
- Sound Separation
 - Reverse engineering the audio mixing process
 - Output: 1 stem per instrument



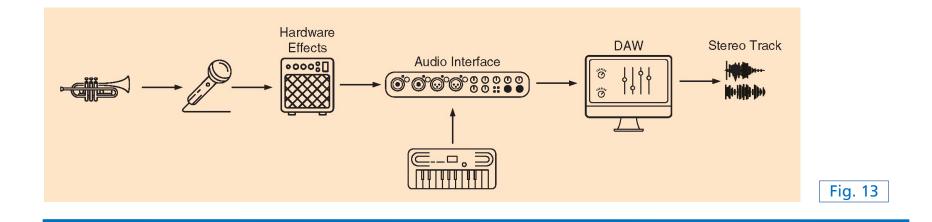
- Audio mix is influenced by
 - Instrument characteristics (timbre, note decay, ...)



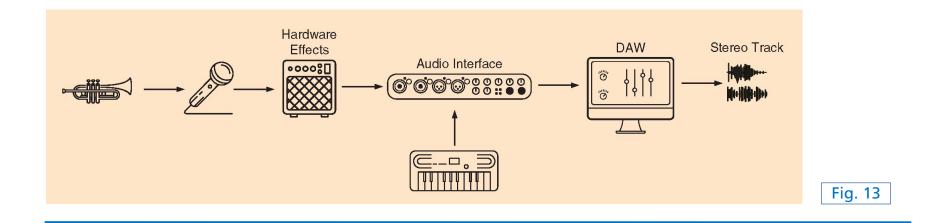
- Audio mix is influenced by
 - Instrument characteristics (timbre, note decay, ...)
 - Musical performance (timing, dynamics, playing techniques, ...)



- Audio mix is influenced by
 - Instrument characteristics (timbre, note decay, ...)
 - Musical performance (timing, dynamics, playing techniques, ...)
 - Recording chain (microphones, room acoustics)



- Audio mix is influenced by
 - Instrument characteristics (timbre, note decay, ...)
 - Musical performance (timing, dynamics, playing techniques, ...)
 - Recording chain (microphones, room acoustics)
 - Post-processing (effects, mastering, DAW mix)



Source Separation Application Scenarios

- Audio remixing
- Audio upmixing
 - $\blacksquare Mono \rightarrow stereo$
 - **Stereo** \rightarrow 5.1

Source Separation Application Scenarios

- Audio remixing
- Audio upmixing
 - $\blacksquare Mono \rightarrow stereo$
 - Stereo \rightarrow 5.1
- Music Analysis
 - Transcription, beat tracking, harmony analysis etc.
- Music Education
 - Solo / Backing track generation

- Harmonic/percussive separation
 - H → stable harmonic components (fundamental frequency, overtones)
 - $P \rightarrow$ transient components (drum sounds, note attacks)

- Harmonic/percussive separation
 - H → stable harmonic components (fundamental frequency, overtones)
 - P → transient components (drum sounds, note attacks)
- Solo/accompaniment separation
 - S → predominant melody instrument
 - \blacksquare A \rightarrow accompanying instruments

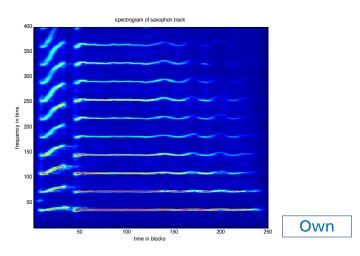
- Harmonic/percussive separation
 - H → stable harmonic components (fundamental frequency, overtones)
 - P → transient components (drum sounds, note attacks)
- Solo/accompaniment separation
 - **S** \rightarrow predominant melody instrument
 - A \rightarrow accompanying instruments
- Singing voice separation
 - **S** \rightarrow singing voice (male / female)
 - $\blacksquare A \rightarrow band$

- Harmonic/percussive separation
 - H → stable harmonic components (fundamental frequency, overtones)
 - P → transient components (drum sounds, note attacks)
- Solo/accompaniment separation
 - **S** \rightarrow predominant melody instrument
 - \blacksquare A \rightarrow accompanying instruments
- Singing voice separation
 - **S** \rightarrow singing voice (male / female)
 - $\blacksquare A \rightarrow band$
- Separation of all sources

- Harmonic/percussive (H/P) separation
 - Different spectral characteristics of harmonic and percussive signals

Harmonic/percussive (H/P) separation

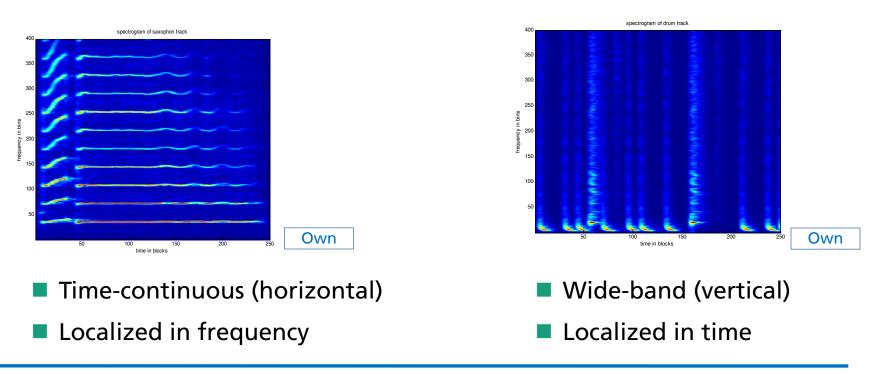
Different spectral characteristics of harmonic and percussive signals

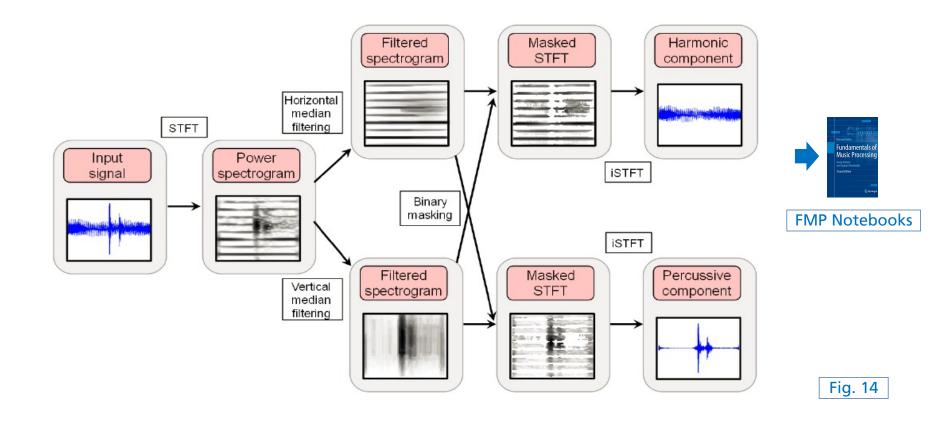


- Time-continuous (horizontal)
- Localized in frequency

Harmonic/percussive (H/P) separation

Different spectral characteristics of harmonic and percussive signals





- Phase-based H/P separation
 - Harmonic sources \rightarrow phase change values are predictable
 - Percussive sources → unpredictable phase (noise-like characteristics)

- Phase-based H/P separation
 - Harmonic sources \rightarrow phase change values are predictable
 - Percussive sources → unpredictable phase (noise-like characteristics)
 - Instantaneous Frequency Distribution (IFD)
 - How does phase change over time?

- Phase-based H/P separation
 - Harmonic mask \rightarrow phase change within range / predictable?

$$H(k,n) = \begin{cases} 1 & \text{if } \Delta_{k_{Low}} < \Phi(k,n) < \Delta_{k_{High}} \\ 0 & \text{otherwise} \end{cases}$$

- Phase-based H/P separation
 - Harmonic mask \rightarrow phase change within range / predictable?

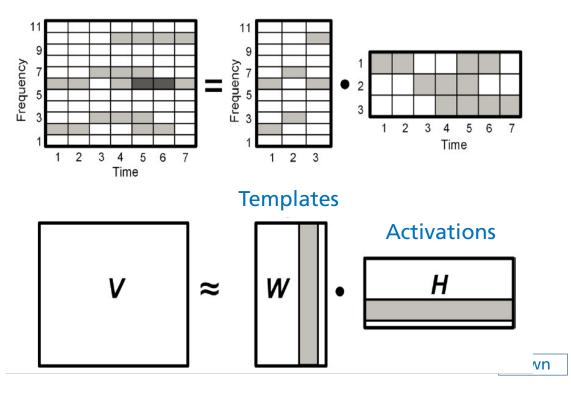
$$H(k,n) = \begin{cases} 1 & \text{if } \Delta_{k_{Low}} < \Phi(k,n) < \Delta_{k_{High}} \\ 0 & \text{otherwise} \end{cases}$$

Percussive mask

$$P(k,n) = 1 - H(k,n)$$

Non-Negative Matrix Factorization (NMF)

Factorize spectrogram V into set of components: $V \approx WH$



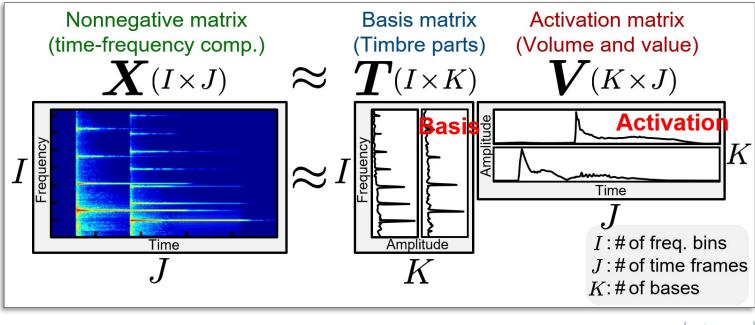


Fig. 19

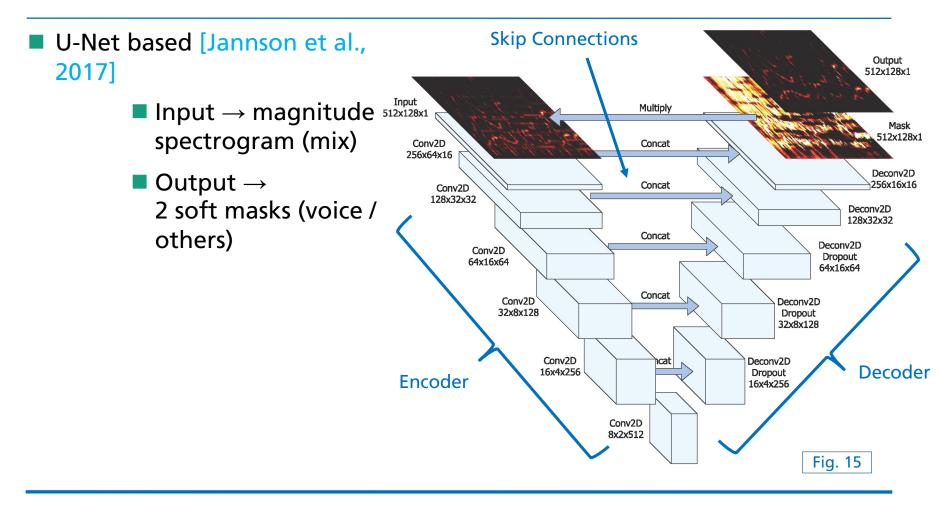
Non-Negative Matrix Factorization (NMF)

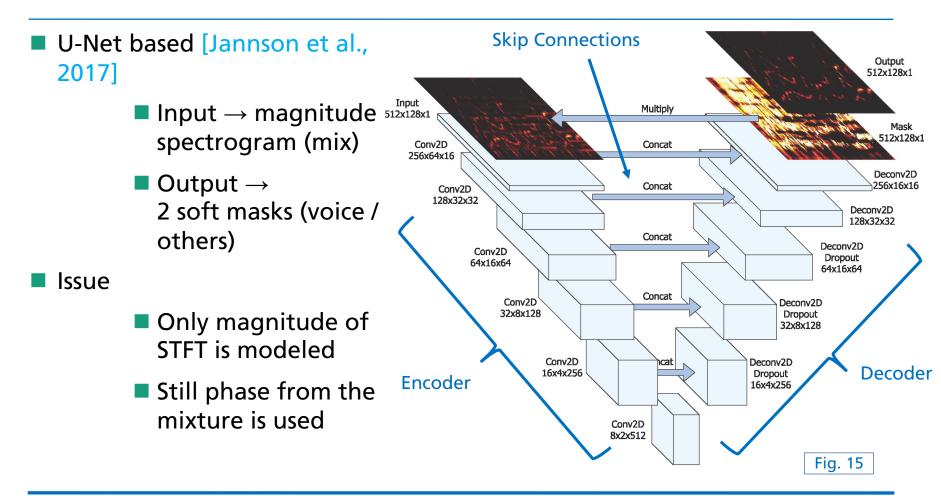
- Algorithm: $V \approx WH$
 - Randomly initialize W & H
 - Use update rules to alternately update W & H
 - Minimize cost function
 - Cost function examples
 - Euclidean distance

$$||A - B||^{2} = \sum_{ij} (A_{ij} - B_{ij})^{2}$$

Kullback-Leibler divergence

$$D(A||B) = \sum_{ij} \left(A_{ij} \log \frac{A_{ij}}{B_{ij}} - A_{ij} + B_{ij} \right)$$





- Spleeter [Hennequin et al., 2020]
 - Open-source version for MIR research

- Spleeter [Hennequin et al., 2020]
 - Open-source version for MIR research
 - 3 pre-trained models
 - 2 stems (vocals and accompaniments)
 - 4 stems (vocals, drums, bass, and other)
 - 5 stems (vocals, drums, bass, piano and other)

Conv-TasNet [Luo & Mesgarani, 2019]

Time-domain speech separation network (end-to-end)

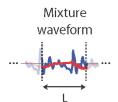
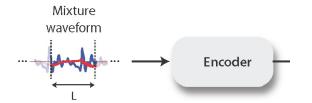


Fig. 16

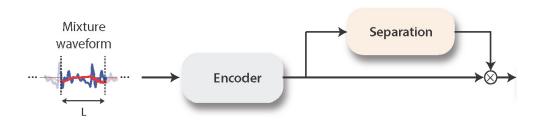
Conv-TasNet [Luo & Mesgarani, 2019]

- Time-domain speech separation network (end-to-end)
- Encoder \rightarrow optimized representation for speaker separation



Conv-TasNet [Luo & Mesgarani, 2019]

- Time-domain speech separation network (end-to-end)
- Encoder \rightarrow optimized representation for speaker separation
- Seperation → masks (weighting functions)

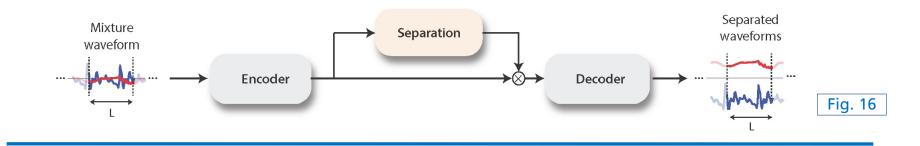


Conv-TasNet [Luo & Mesgarani, 2019]

- Time-domain speech separation network (end-to-end)
- Encoder \rightarrow optimized representation for speaker separation

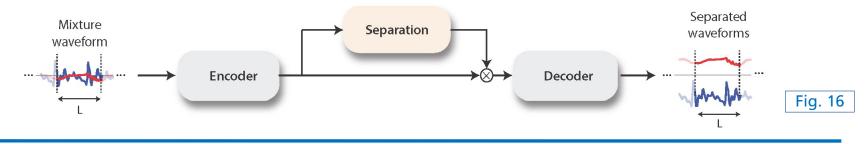
■ Seperation → masks (weighting functions)

• Decoder \rightarrow invert to waveforms

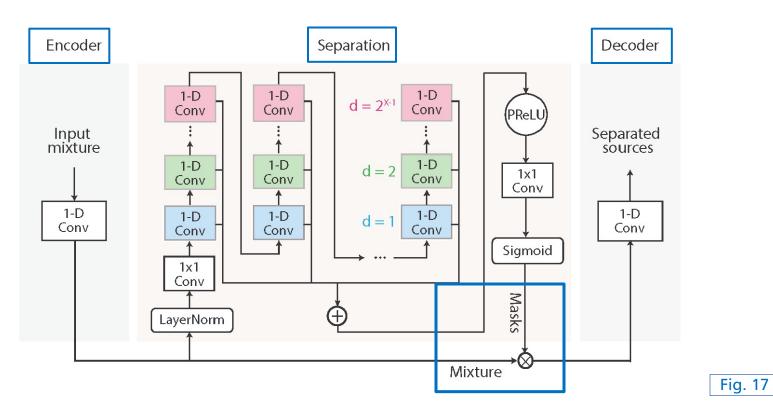


Conv-TasNet [Luo & Mesgarani, 2019]

- Time-domain speech separation network (end-to-end)
- Encoder \rightarrow optimized representation for speaker separation
- Seperation → masks (weighting functions)
- Decoder \rightarrow invert to waveforms
- Temporal convolutional networks (TCN)
 - Stack of 1-D dilated convolutional blocks
 - **Large receptive field** \rightarrow model long-term dependencies



Conv-TasNet [Luo & Mesgarani, 2019]



Summary

Case Studies

Pitch Detection

Instrument Recognition

References

Cano, E., Fitzgerald, D., Liutkus, A., Plumbley, M. D., & Stoter, F. R. (2019). Musical Source Separation: An Introduction. *IEEE Signal Processing Magazine*, *36*(1), 31–40.

Grasis, M., Abeßer, J., Dittmar, C., & Lukashevich, H. (2014). A Multiple-Expert Framework for Instrument Recognition. *Lecture Notes in Computer Science 8905*, 619–634.

Han, Y., Kim, J., & Lee, K. (2017). Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music. *IEEE/ACM Transactions on Audio Speech and Language Processing*, 25(1), 208–221.

Hennequin, R., Khlif, A., Voituret, F., & Moussallam, M. (2020). Spleeter: a fast and efficient music source separation tool with pre-trained models. *Journal of Open Source Software*, *5*(50), 2154.

Hsieh, T. H., Su, L., & Yang, Y. H. (2019). A Streamlined Encoder/Decoder Architecture for Melody Extraction. *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 156–160. Brighton, UK.

Hung, Y.-N., & Yang, Y.-H. (2018). Frame-Level Instrument Recognition by Timbre and Pitch. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 135–142. Paris, France.

Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A., & Weyde, T. (2017). Singing Voice Separation with Deep U-Net Convolutional Networks. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 745–751. Suzhou, China.

References

Kim, J. W., Salamon, J., Li, P., & Bello, J. P. (2018). Crepe: A Convolutional Representation for Pitch Estimation. *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 161–165. New Orleans, USA.

Luo, Y., & Mesgarani, N. (2019). Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 27(8), 1256–1266.

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Salamon, J., & Gomez, E. (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. *IEEE Transactions on Audio, Speech and Language Processing*, *20*(6), 1759–1770.

Images

- Fig. 1: [Müller, 2021], p. 449, Fig. 8.15(b)
- Fig. 2: http://www.guitaradventures.com/wp-content/uploads/Tuning-your-guitar.jpg
- Fig. 3: https://cdn2.whatoplay.com/screenshots/2631slide-4.jpg
- Fig. 4: https://cdn.androidcommunity.com/wp-content/uploads/2010/11/500x_angrybirdsdarwin.jpg
- Fig. 5: [Müller, 2021], p. 449, Fig. 8.15(a)
- Fig. 6: Sonic Visualiser: http://www.sonicvisualiser.org/, Melodia plugin: http://mtg.upf.edu/technologies/melodia
- Fig. 7: [Kim et al., 2018], p. 2, Fig. 1
- Fig. 8: [Hsieh et al., 2019], p. 2, Fig. 2
- Fig. 9: [Grasis et al., 2014], p. 6, Fig. 3
- Fig. 10: [Han et al., 2017], p. 3, Fig. 1
- Fig. 11: [Han et al., 2017], p. 9, Fig. 6
- Fig. 12: [Hung & Yang, 2018], p. 4, Fig. 1
- Fig. 13: [Cano et al., 2019], p. 3, Fig. 3
- Fig. 14: [Müller, 2021], p. 425, Fig. 8.3

Images

- Fig. 15: [Jansson, 2017], p. 3, Fig. 1
- Fig. 16: [Luo & Mesgarani, 2019], p. 3, Fig. 1(A)
- Fig. 17: [Luo & Mesgarani, 2019], p. 3, Fig. 1(B)
- Fig. 18: [Müller, 2021], p. 422, Fig. 8.1
- Fig. 19: http://d-kitamura.net/demo/defNMF/nmf_en.png

Sounds

AUD-1: Aislinn – Capclear (2013), https://freemusicarchive.org/music/Aislinn/Aislinn/10_-_Aislinn_-_Capclear

AUD-2: Aislinn – Fourteen Days (2013), https://freemusicarchive.org/music/Aislinn/Aislinn/11_-_Aislinn_-_Fourteen_days

AUD-3: Anonymous Choir – Amicus Meus (2009), https://freemusicarchive.org/music/Anonymous_Choir/Toms_Luis_de_Victorias_Amicus_Meus/Amicus_Meus

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de