Machine Listening for Music and Sound Analysis

Lecture 3 – Music Information Retrieval I

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

Overview

- Music Information Retrieval
- Music Tagging
- Music Similarity
- Tempo Estimation

Music Information Retrieval Examples

Music Information Retrieval Motivation

- Large music collections
- Mobile device apps / instruments

Music Information Retrieval Motivation

- Large music collections
- Mobile device apps / instruments
- Music industry shifts almost completely to online products & services
- Growing market of music streaming services

What's that song again? Who's singing that?

Audio identification

What's that song again? Who's singing that?

- Audio identification
- I want to learn that song on my instrument!
 - Automatic music transcription

What's that song again? Who's singing that?

- Audio identification
- I want to learn that song on my instrument!
 - Automatic music transcription
- What songs are similar? How to generate a playlist?
 - Audio similarity search

What's that song again? Who's singing that?

Audio identification

I want to learn that song on my instrument!

Automatic music transcription

What songs are similar? How to generate a playlist?

Audio similarity search

How to organize my music? Which genre / style?

Audio classification

Interdisciplinary research community

- Musicology / Music Cognition
- Artificial Intelligence / Signal Processing
- Human-Computer Interaction
- Information Retrieval, etc...

Interdisciplinary research community

- Musicology / Music Cognition
- Artificial Intelligence / Signal Processing

Human-Computer Interaction

Information Retrieval, etc...

Conferences

- ISMIR (International Society for Music Information Retrieval Conference)
- IEEE ICASSP, DAFx, AES, ICMC, SMC

Interdisciplinary research community

- Musicology / Music Cognition
- Artificial Intelligence / Signal Processing

Human-Computer Interaction

Information Retrieval, etc...

Conferences

- ISMIR (International Society for Music Information Retrieval Conference)
- IEEE ICASSP, DAFx, AES, ICMC, SMC

MIREX competition (Music Information Retrieval Evaluation eXchange)

- MIR @ Fraunhofer IDMT
 - Semantic music technologies (SMT) group
 - Staff + PhD / master / bachelor students + interns

- MIR @ Fraunhofer IDMT
 - Semantic music technologies (SMT) group
 - Staff + PhD / master / bachelor students + interns
- National / international research groups
 - International Audio Laboratories Erlangen, Germany
 - Centre for Digital Music, Queen Mary University, London, UK
 - Universitat Pompeu Fabra, Barcelona, Spain
 - Institute for music/acoustic research and coordination (IRCAM), Paris, France
 - USA, China, Taiwan, Japan, Korea, etc.

Music Information Retrieval Research Task Taxonomy

Music Information Retrieval Case Studies

MIR 1 lecture

Music tagging / music similarity \rightarrow general tasks

■ Tempo estimation → rhythm

Music Information Retrieval Case Studies

MIR 1 lecture

Music tagging / music similarity \rightarrow general tasks

Tempo estimation \rightarrow rhythm

MIR 2 lecture

Pitch detection \rightarrow pitch / tonality

Source separation & instrument recognition \rightarrow timbre

Music Information Retrieval Case Studies

MIR 1 lecture

■ Music tagging / music similarity → general tasks

Tempo estimation \rightarrow rhythm

MIR 2 lecture

Pitch detection \rightarrow pitch / tonality

Source separation & instrument recognition \rightarrow timbre

Teaching Concept

Music Tagging Introduction

Tags

Textual (objective / subjective) annotations of songs

Music Tagging Introduction

Tags

Textual (objective / subjective) annotations of songs

Examples

- Instruments (drums, bass, guitar, vocals …)
- Genre (classical, electro, hip hop)
- Mood (mellow, romantic, angry, happy)
- Miscellaneous (noise, loud, ambient)

Music Tagging Introduction

Tags

- Textual (objective / subjective) annotations of songs
- Examples
 - Instruments (drums, bass, guitar, vocals …)
 - Genre (classical, electro, hip hop)
 - Mood (mellow, romantic, angry, happy)
 - Miscellaneous (noise, loud, ambient)

Challenge

- Music pieces change their characteristics over time
 - E.g.: trumpet plays only in the chorus (jazz)

Audio feature engineering & music domain knowledge

Own

Audio feature engineering & music domain knowledge

Audio feature engineering & music domain knowledge

- Audio feature engineering & music domain knowledge
- Standard classification methods (GMM, SVM, kNN)

Fig. 3

(a) Feature engineering (MFCC)(b) Low-level feature

© Jakob Abeßer, 2022

(b) Low-level feature

classification (CNN)

© Jakob Abeßer, 2022

Joint representation learning & classification using CNNs

Input: spectrograms (2D) or audio samples (1D end-to-end)

Joint representation learning & classification using CNNs

Input: spectrograms (2D) or audio samples (1D end-to-end)

Integrate musical knowledge in network design (e.g., filter shapes)

- End-to-end learning
 - Model input is low-level representation (audio waveform)
 - No pre-processing / assumptions required

End-to-end learning

- Model input is low-level representation (audio waveform)
- No pre-processing / assumptions required
- Not restricted to spectral magnitudes \rightarrow can model phase!
- Requires large amounts of training data

- Transfer Learning
 - Pre-train model on source task (lot of data available)

Transfer Learning

- Pre-train model on source task (lot of data available)
- Fine-tune model on target task (only little data available)

Source model (CNN) \rightarrow Target model (embeddings + shallow classifier)

Music Similarity Introduction

■ Music → inherently multi-dimensional
■ Music → inherently multi-dimensional

Example: similarity between three tracks A, B, and C

Music → inherently multi-dimensional

Example: similarity between three tracks A, B, and C

Challenge

Large music databases

Incomplete / missing metadata

Music → inherently multi-dimensional

Example: similarity between three tracks A, B, and C

Challenge

Large music databases

Incomplete / missing metadata

Query by example \rightarrow general retrieval approach

Retrieval most similar song S given a query song Q

Retrieval tasks

Music fingerprinting (retrieve title, artist, e.g., Shazam app)

- Retrieval tasks
 - Music fingerprinting (retrieve title, artist, e.g., Shazam app)
 - Cover song identification (similar text, chord progressions ...)

- Retrieval tasks
 - Music fingerprinting (retrieve title, artist, e.g., Shazam app)
 - Cover song identification (similar text, chord progressions ...)
 - Music replacement (similar style, instrumentation)

Retrieval tasks

Music fingerprinting (retrieve title, artist, e.g., Shazam app)

- Cover song identification (similar text, chord progressions ...)
- Music replacement (similar style, instrumentation)

Specificity of different tasks

Different dimensions of music similarity

Different dimensions of music similarity

Melodic similarity (pitch contours)

Different dimensions of music similarity

Melodic similarity (pitch contours)

Timbral similarity (instrumentation)

		📟 Piano 📟 Guitar 📟 Voca

Different dimensions of music similarity

Melodic similarity (pitch contours)

Timbral similarity (instrumentation)

	Piano — Guitar — Vocals
--	-------------------------

Structural / harmonic similarity (segments, chords)

Am	Em	Am	G	F
----	----	----	---	---

Different dimensions of music similarity

Melodic similarity (pitch contours)

Timbral similarity (instrumentation)

Structural / harmonic similarity (segments, chords)

Am Em Am G F

Rhythmic similarity (patterns)

Metric learning

Model (abstract) notion of similarity between data instances

- Metric learning
 - Model (abstract) notion of similarity between data instances
 - Pair-wise distance between feature representations

- Metric learning
 - Model (abstract) notion of similarity between data instances
 - Pair-wise distance between feature representations
- Training
 - Proximity between similar instances
 - Distance between dissimilar instances

- Metric learning
 - Model (abstract) notion of similarity between data instances
 - Pair-wise distance between feature representations
- Training
 - Proximity between similar instances
 - Distance between dissimilar instances
- **Query** $Q \rightarrow$ Ranked list of most similar instances S

- Metric learning
 - Model (abstract) notion of similarity between data instances
 - Pair-wise distance between feature representations
- Training
 - Proximity between similar instances
 - Distance between dissimilar instances
- **Query** $Q \rightarrow$ Ranked list of most similar instances S
- Distance measures
 - Euclidean distance, Cosine distance, etc.

- Disentanglement learning
 - Goal → separate underlying semantic concepts (e.g., genre, instrument, mood)
 - learnt jointly
 - remain separable in the embedding space

Disentanglement learning

- Goal → separate underlying semantic concepts (e.g., genre, instrument, mood)
 - learnt jointly

remain separable in the embedding space

Improves

- Music tagging (classification)
- Music recommendation (similarity)

- Triplet-based Training
 - Conditional Similarity Networks (CSN) [Lee, 2020]

- Triplet-based Training
 - Conditional Similarity Networks (CSN) [Lee, 2020]

- Triplet-based Training
 - Conditional Similarity Networks (CSN) [Lee, 2020]

Embedding Deep Neural Network Spectrogram

Applying binary masks to embeddings

Fig. 10

- Triplet-based Training
 - Conditional Similarity Networks (CSN) [Lee, 2020]

Applying binary masks to embeddings

Fig. 10

- Tempo [beats / minute]
 - Frequency with which humans tap along the beat

- Tempo [beats / minute]
 - Frequency with which humans tap along the beat

Beat tracking

- Tempo [beats / minute]
 - Frequency with which humans tap along the beat

Beat tracking

Note onsets \rightarrow note beginning times

■ Note onsets → note beginning times

- Clearly defined for plucked string and percussion instruments
- Ambiguous for wind & brass instruments

■ Note onsets → note beginning times

- Clearly defined for plucked string and percussion instruments
- Ambiguous for wind & brass instruments

Onset detection

- Onset detection function
- Peak picking

Note onsets \rightarrow note beginning times

- Clearly defined for plucked string and percussion instruments
- Ambiguous for wind & brass instruments
- Onset detection
 - Onset detection function
 - Peak picking

Audio samples

Note onsets \rightarrow note beginning times

- Clearly defined for plucked string and percussion instruments
- Ambiguous for wind & brass instruments

Onset detection

Attack

Onse

Audio samples ---- Note envelope

Transient

Decay

Fig. 13

Predominant local pulse (PLP)

Predominant local pulse (PLP)

 Correlation with local (windowed) periodic patterns

- Predominant local pulse (PLP)
 - Correlation with local (windowed) periodic patterns
- Tempogram [Grosche & Müller, 2011]
 - Local likelihood of different tempo candidates

- Predominant local pulse (PLP)
 - Correlation with local (windowed) periodic patterns
- Tempogram [Grosche & Müller, 2011]
 - Local likelihood of different tempo candidates
 - Allows to follow tempo changes (e.g., classical music) (c

Tempo Detection Novel Methods

Fig. 17

(a) Input audio signal

Signal representation

- Stacking of 3 STFT magnitude spectrograms (N=1024, 2048, 4096)
- Log-amplitude & log-frequency

- Neural Network
 - Recurrent (bi-directional LSTM) layer
 - Outputs beat activation function

(c) Neural network output (beat activation function)

- Neural Network
 - Recurrent (bi-directional LSTM) layer
 - Outputs beat activation function
- Comb filter bank
 - Multiple comb filters → detect periodicities

(c) Neural network output (beat activation function)

- Neural Network
 - Recurrent (bi-directional LSTM) layer
 - Outputs beat activation function
- Comb filter bank
 - Multiple comb filters → detect periodicities
- Estimate tempo from histogram maximum

(f) Weighted histogram with summed maxima

- Approach [Schreiber & Müller, 2018]
 - Sample rate ~ 11 kHz, 40-band mel spectrogram
- Main contributions
 - End-to-end tempo without intermediate novelty function

- Approach [Schreiber & Müller, 2018]
 - Sample rate ~ 11 kHz, 40-band mel spectrogram
- Main contributions
 - End-to-end tempo without intermediate novelty function
 - 4 multi-filter modules → compress along frequency & find periodicities

- Approach [Schreiber & Müller, 2018]
 - Sample rate ~ 11 kHz, 40-band mel spectrogram
- Main contributions
 - End-to-end tempo without intermediate novelty function
 - 4 multi-filter modules → compress along frequency & find periodicities
 - Dense layers → tempo classification
 - 256 classes: 30 285 bpm

Summary

- Music Information Retrieval
- Music Tagging
- Music Similarity
- Tempo Estimation
- Main trends

Adapt (data-driven) deep learning methods to music domain

Incorporate music domain knowledge

References

Böck, S., Krebs, F., & Widmer, G. (2015). Accurate tempo estimation based on recurrent neural networks and resonating comb filters. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 625–631.

Grosche, P., & Müller, M. (2011). Extracting Predominant Local Pulse Information From Music Recordings. *IEEE Transactions on Audio, Speech and Language Processing*, *19*(6), 1688–1701.

Lee, J., Bryan, N. J., Salamon, J., Jin, Z., & Nam, J. (2020). Disentangled Multidimensional Metric Learning for Music Similarity. *Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 6–10. Barcelona, Spain.

Lee, J., Bryan, N. J., Salamon, J., Jin, Z., & Nam, J. (2020). Metric learning vs classification for disentangled music representation learning. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 439–445. Montréal, Canada.

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Nam, J., Choi, K., Lee, J., Chou, S. Y., & Yang, Y. H. (2019). Deep Learning for Audio-Based Music Classification and Tagging: Teaching Computers to Distinguish Rock from Bach. *IEEE Signal Processing Magazine*, *36*(1), 41–51.

Pons, J., Nieto, O., Prockup, M., Schmidt, E., Ehrmann, A., & Serra, X. (2018). End-to-End Learning for Music Audio Tagging at Scale. *Proceedings of the International Society for Music Information Retrieval (ISMIR)2*, 637–644. Paris, France.

References

Ribecky, S. (2021). *Disentanglement Representation Learning for Music Annotation and Music Similarity*. Master Thesis. Technische Universität Ilmenau.

Schreiber, H., & Müller, M. (2018). A Single-Step Approach to Musical Tempo Estimation using a Convolutional Neural Network. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 98–105. Paris, France.

Won, M., Chun, S., Nieto, O., & Serra, X. (2020). Data-Driven Harmonic Filters for Audio Representation Learning. *Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 536–540. Barcelona, Spain.

Images

- Fig. 1: https://www.synchtank.com/wp-content/uploads/2018/06/1476277072027.jpg
- Fig. 2: https://miro.medium.com/max/800/1*cC1KOdyzzt1nazak42cBdg.jpeg
- Fig. 3: [Nam, 2019], p. 42, Fig. 1
- Fig. 4: [Won, 2020], p. 537, Fig. 1a
- Fig. 5: [Nam, 2019], p. 48, Fig. 4
- Fig. 6: [Pons, 2018], p. 639, Fig. 2 (top left)
- Fig. 7: [Lee, 2020, ICASSP], p. 1, Fig. 1
- Fig. 8: [Ribecky, 2021], p. 26, Fig. 2.11
- Fig. 10: [Lee, 2020, ICASSP], p. 2, Fig. 2
- Fig. 11: [Müller, 2021], p. 309, chapter 6 (cover image)
- Fig. 12: [Müller, 2021], p, 310, Fig. 6.1(b)
- Fig. 13: [Müller, 2021], p. 311, Fig. 6.2
- Fig. 14: [Müller, 2021], p. 313, Fig. 6.3(a)&(b)

Images

- Fig. 15: [Grosche & Müller, 2009], p. 2, Fig. 1(e-g) & p. 3, Fig. 2 (a)
- Fig. 16: [Böck et al., 2015], p. 2, Fig. 1
- Fig. 17: [Böck et al., 2015], p. 3, Fig. 2 (a) & (b)
- Fig. 18: [Böck et al., 2015], p. 3, Fig. 2 (c) & (f)
- Fig. 19: [Schreiber & Müller, 2018], p. 3, Fig. 2

Sounds

AUD-1: Mr Smith – Black Top (2021), https://freemusicarchive.org/music/mr-smith/studio-city/black-top

AUD-2: Crowander – Humbug (2021), https://freemusicarchive.org/music/crowander/from-the-piano-solo-piano/humbug

AUD-3: Bumy Goldson: Keep Walking (2021), https://freemusicarchive.org/music/bumy-goldson/parlor/keep-walking

AUD-4: Cloudjumper: Mocking the god (2016), https://freemusicarchive.org/music/Cloudjumper/Memories_of_Snow/05_Cloudjumper_-_Mocking_the_gods

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de