
© Jakob Abeßer, 2023

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Muhammad Ateeque Zaryab

Machine Listening for Music and Sound
Analysis

Lecture 2 – Machine Learning/Deep Learning

https://machinelistening.github.io

© Jakob Abeßer, 2022

Learning Objectives

n Introduction

n Learning paradigms

n Machine learning (ML) project pipeline

n Deep learning

© Jakob Abeßer, 2022

Introduction

n Goals

n “...give computers the ability to learn without being explicitly
programmed“ [Samuels, 1959]

n Learning structures in given (un)labeled data to make
predictions on new / unseen data

n Paradigm change

n Before: manually designed / general-purpose features

n Now: joint representation learning (features) & data modeling
(classification)

n Related disciplines

n Statistics, data science, optimization

© Jakob Abeßer, 2022

Introduction
Terminology

n Artificial Intelligence (AI)

n “an agent‘s ability to achieve goals
in a wide range of environments“
[Legg & Hutter, 2007]

n Machine Learning (ML)

n Pattern recognition, data
modeling, learning, prediction

n Deep Learning (DL)

n (Brain-inspired) artificial neural
networks (ANN)

n Data Science

n Knowledge extraction from data

Machine
Learning

Artificial
Intelligence

Deep
Learning

Data Science

Own

© Jakob Abeßer, 2022

Introduction
Application Scenarios

n Computational finance (credit scoring, algorithmic trading)

n Computer vision (face & object recognition, motion detection)

n Computational biology (tumor detection, drug discovery, DNA
sequencing)

© Jakob Abeßer, 2022

Introduction
Application Scenarios

n Computational finance (credit scoring, algorithmic trading)

n Computer vision (face & object recognition, motion detection)

n Computational biology (tumor detection, drug discovery, DNA
sequencing)

n Energy (price & load forecasting)

n Predictive maintenance (automotive, aerospace, manufacturing)

© Jakob Abeßer, 2022

Introduction
Application Scenarios

n Computational finance (credit scoring, algorithmic trading)

n Computer vision (face & object recognition, motion detection)

n Computational biology (tumor detection, drug discovery, DNA
sequencing)

n Energy (price & load forecasting)

n Predictive maintenance (automotive, aerospace, manufacturing)

n Natural language processing (sentiment classification, text search,
translation)

n Machine listening (music transcription, instrument recognition, sound
event detection, acoustic scene classification)

© Jakob Abeßer, 2022

Learning Paradigms

Fig. 1

© Jakob Abeßer, 2022

Learning Paradigms
Unsupervised Learning

Fig. 1

© Jakob Abeßer, 2022

Learning Paradigms
Unsupervised Learning

n Goal
n Find hidden structure and patterns in data
n No annotations available

© Jakob Abeßer, 2022

Learning Paradigms
Unsupervised Learning

n Goal
n Find hidden structure and patterns in data
n No annotations available

n Clustering
n Grouping of similar data instances

© Jakob Abeßer, 2022

n Goal
n Find hidden structure and patterns in data
n No annotations available

n Clustering
n Grouping of similar data instances

Model

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n Goal
n Find hidden structure and patterns in data
n No annotations available

n Clustering
n Grouping of similar data instances

Model

Clusters

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n Challenges
n What is the optimal number of clusters?

2 clusters

?

3 clusters

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Initialize K “means” randomly (=cluster centroids)

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n K=3

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Assignment: assign each data point to its closest mean

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Assignment: assign each data point to its closest mean

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Assignment: assign each data point to its closest mean

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Update: update mean by average over all assigned data points

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Assignment: re-assign data points to closest mean

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

n K-means clustering
n Update: re-assign data points to closest mean (repeat until

convergence)

Learning Paradigms
Unsupervised Learning

© Jakob Abeßer, 2022

[2]

Learning Paradigms
Supervised Learning

Fig. 1

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning

e.g., images,
audio samples

Own

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning

Prediction
functione.g., images,

audio samples

Own

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning

Prediction
function Cost function

e.g., images,
audio samples

e.g., object class (cat, dog, …) or quantity (e.g. house price)

Own

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning

Prediction
function Cost function

Update

e.g., images,
audio samples

e.g., object class (cat, dog, …) or quantity (e.g. house price)

Own

© Jakob Abeßer, 2022

[2]

Learning Paradigms
Supervised Learning - Classification

Fig. 1

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

n Predict one or multiple categorical labels from features

n Examples → music genre, instrument(s), key

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

n Predict one or multiple categorical labels from features

n Examples → music genre, instrument(s), key

n Feature space modeling (Example: 2 classes)

Fig. 3

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

n Predict one or multiple categorical labels from features

n Examples → music genre, instrument(s), key

n Feature space modeling (Example: 2 classes)

Fig. 3

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

n Example: k-Nearest Neighbors

n Training → Store all examples

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

Fig. 4

Class 1
Class 2

n Example: k-Nearest Neighbors

n Training → Store all examples

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

Fig. 4

?

Class 1
Class 2

n Example: k-Nearest Neighbors

n Training → Store all examples

n Test → Assign test item to
dominant class label of the k
clostest training data items

𝑘 = 3→ =?

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

Fig. 4

?

Class 1
Class 2

n Example: k-Nearest Neighbors

n Training → Store all examples

n Test → Assign test item to
dominant class label of the k
clostest training data items

𝑘 = 11→ =?

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Classification

n Example: k-Nearest Neighbors

n Training → Store all examples

n Test → Assign test item to
dominant class label of the k
clostest training data items

n Distance measures

n Euclidean distance, Manhatten
distance, cosine distance, …

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning

Fig. 1

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Regression

© Jakob Abeßer, 2022

Learning Paradigms
Supervised Learning - Regression

Data points
(observations)

Predictions

Regression Line

Own

© Jakob Abeßer, 2022

Data Collection & Pre-
Processing

ML Project Pipeline
Overview

Own

© Jakob Abeßer, 2022

Data Collection & Pre-
Processing

Data
Split

ML Project Pipeline
Overview

Own

© Jakob Abeßer, 2022

Data Collection & Pre-
Processing

e.g. 80%

Model
Selection

Data
Split

Training
Data

Validation
Data

Model
Training

Model
Validation

Parameter Optimization

ML Project Pipeline
Overview

Own

10%

© Jakob Abeßer, 2022

Data Collection & Pre-
Processing

e.g. 80%

Model
Selection

Data
Split

Training
Data

Validation
Data

Test
Data

10% 10%

Model
Training

Model
Validation

Parameter Optimization

Model
Testing

Metrics

ML Project Pipeline
Overview

Own

© Jakob Abeßer, 2022

ML Project Pipeline
Data Split

n Training Set

n Model learns from this data

© Jakob Abeßer, 2022

ML Project Pipeline
Data Split

n Training Set

n Model learns from this data

n Validation / Development Set

n Used to fine-tune the model (hyper)parameters

n Model occasionally sees but does not learn from this data

© Jakob Abeßer, 2022

ML Project Pipeline
Data Split

n Training Set

n Model learns from this data

n Validation / Development Set

n Used to fine-tune the model (hyper)parameters

n Model occasionally sees but does not learn from this data

n Test set

n Only used once after the model training & tuning is completed

n Should reflect the targeted real-world use case for the model

© Jakob Abeßer, 2022

ML Project Pipeline
Data Split

n Training Set

n Model learns from this data

n Validation / Development Set

n Used to fine-tune the model (hyper)parameters

n Model occasionally sees but does not learn from this data

n Test set

n Only used once after the model training & tuning is completed

n Should reflect the targeted real-world use case for the model

n Common split ratios

n 80/10/10% or even 98/1/1% (for large datasets)

© Jakob Abeßer, 2022

ML Project Pipeline
Data Collection & Pre-Processing

n Data collection

n Check for available data resources for given (or related) task

n Collect / record / annotate new data (if necessary)

n Ensure data variability

n Example (from acoustic condition monitoring) → include
different motor engine types & conditions, recording
locations, microphones, …

© Jakob Abeßer, 2022

ML Project Pipeline
Data Collection & Pre-Processing

n Data collection

n Check for available data resources for given (or related) task

n Collect / record / annotate new data (if necessary)

n Ensure data variability

n Example (from acoustic condition monitoring) → include
different motor engine types & conditions, recording
locations, microphones, …

n Data cleanup / pre-processing

n Remove errors, silence, empty files, …

n Balance dataset (proportions among class examples)

n Normalize (depends on the model)

© Jakob Abeßer, 2022

ML Project Pipeline
Model Selection

n Model Types (SVM, GMM, logistic
regression, DNNs)

n Hyperparameters (SVM kernel functions,
DNN layer types)

Fig. 6

© Jakob Abeßer, 2022

ML Project Pipeline
Model Selection

n Model Types (SVM, GMM, logistic
regression, DNNs)

n Hyperparameters (SVM kernel functions,
DNN layer types)

n Constraints from application scenario

n Model complexity (memory,
training time, training data
amount)

Fig. 6

© Jakob Abeßer, 2022

ML Project Pipeline
Model Selection

n Model Types (SVM, GMM, logistic
regression, DNNs)

n Hyperparameters (SVM kernel functions,
DNN layer types)

n Constraints from application scenario

n Model complexity (memory,
training time, training data
amount)

n Feature pre-processing depends on model
type

n Use simple models for simple tasks

Fig. 6

© Jakob Abeßer, 2022

ML Project Pipeline
Model Training

n Iterative process

n Typically: start with random parameter initialization

© Jakob Abeßer, 2022

ML Project Pipeline
Model Training

n Iterative process

n Typically: start with random parameter initialization

n Use (batches of) training data to iteratively improve model
predictions (optimization)

n Learn from examples

© Jakob Abeßer, 2022

ML Project Pipeline
Model Training

n Iterative process

n Typically: start with random parameter initialization

n Use (batches of) training data to iteratively improve model
predictions (optimization)

n Learn from examples

n Update model parameters according to loss function

© Jakob Abeßer, 2022

ML Project Pipeline
Model Training

n Example: linear regression

n Training loop

Own

© Jakob Abeßer, 2022

ML Project Pipeline
Model Validation

n Regular model evaluation each or
multiple training iteration

© Jakob Abeßer, 2022

ML Project Pipeline
Model Validation

n Regular model evaluation each or
multiple training iteration

Fig. 7

© Jakob Abeßer, 2022

ML Project Pipeline
Model Validation

n Regular model evaluation each or
multiple training iteration

n Helps to

n optimize model
(hyper)parameters

n detect overfitting on
training data

n stop the training

Training Iterations

Loss

Training data

Validation data

Stop here! Fig. 7

Own

© Jakob Abeßer, 2022

ML Project Pipeline
Model Testing

Fig. 8

n Example: Binary classification evaluation

n True/false positives (TP/FP)

n True/false negatives (TN/FN)

© Jakob Abeßer, 2022

ML Project Pipeline
Model Testing

Fig. 8

n Example: Binary classification evaluation

n True/false positives (TP/FP)

n True/false negatives (TN/FN)

n Metrics

n Precision

n Recall

n Accuracy

n F-score

© Jakob Abeßer, 2022

Deep Learning
Introduction

n Artificial neural networks → mimic brain
processing

n Connected neurons

n Weighted input summation

n Non-linear processing

Fig. 9

© Jakob Abeßer, 2022

Deep Learning
Introduction

n Artificial neural networks → mimic brain
processing

n Connected neurons

n Weighted input summation

n Non-linear processing

n Shallow networks

Fig. 10

Fig. 9

© Jakob Abeßer, 2022

Deep Learning
Introduction

n Artificial neural networks → mimic brain
processing

n Connected neurons

n Weighted input summation

n Non-linear processing

n Shallow networks → deep networks

Fig. 10

Fig. 9

© Jakob Abeßer, 2022

Deep Learning
Introduction

n Hierarchical feature learning

n Example (face recognition)

First layers Final layers

Edges, curves Fig. 11

© Jakob Abeßer, 2022

Deep Learning
Introduction

n Hierarchical feature learning

n Example (face recognition)

First layers Final layers

Edges, curves Shapes, object parts Fig. 11

© Jakob Abeßer, 2022

Deep Learning
Introduction

n Hierarchical feature learning

n Example (face recognition)

First layers Final layers

Edges, curves Shapes, object parts Objects (faces) Fig. 11

© Jakob Abeßer, 2022

Deep Learning
Fully-connected (Deep) Neural Networks

Input layer

Own

© Jakob Abeßer, 2022

Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers

Own

© Jakob Abeßer, 2022

Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers

Own

© Jakob Abeßer, 2022

Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers

Own

© Jakob Abeßer, 2022

Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers Output layer

Own

© Jakob Abeßer, 2022

Deep Learning
Activation Functions

n Activation functions add non-linearity

n Make networks more powerful in (complex) pattern recognition

n Examples:

Fig. 12

© Jakob Abeßer, 2022

Deep Learning
Training

n Overview

Own

© Jakob Abeßer, 2022

Deep Learning
Training

n Overview

https://www.skampakis.com/wp-
content/uploads/2018/03/simple_neural_
network_vs_deep_learning.jpgDNN

Forward
propagation

Own

© Jakob Abeßer, 2022

Deep Learning
Training

n Overview

https://www.skampakis.com/wp-
content/uploads/2018/03/simple_neural_
network_vs_deep_learning.jpgDNN Loss

Forward
propagation

Own

© Jakob Abeßer, 2022

Deep Learning
Training

n Overview

https://www.skampakis.com/wp-
content/uploads/2018/03/simple_neural_
network_vs_deep_learning.jpgDNN Loss

Gradient w.r.t
model

weights

Forward
propagation

Back-
propagation

Weight
update

Own

© Jakob Abeßer, 2022

Deep Learning
Training

n Forward propagation → propagate batch of training data through the
network → compute loss (compare to targets)

Fig. 20

© Jakob Abeßer, 2022

Deep Learning
Training

n Forward propagation → propagate batch of training data through the
network → compute loss (compare to targets)

n Backpropagation → backpropagate loss → compute gradients of loss
w.r.t. weights

Fig. 20

© Jakob Abeßer, 2022

Deep Learning
Training

n Forward propagation → propagate batch of training data through the
network → compute loss (compare to targets)

n Backpropagation → backpropagate loss → compute gradients of loss
w.r.t. weights

n Weights update → use gradients & learning rate to update weights

Fig. 20

© Jakob Abeßer, 2022

Deep Learning
Training

n Gradient descent

n Move in opposite direction of gradient

n Learning rate effects step size

Fig. 15

Loss

𝑤! 𝑤"

© Jakob Abeßer, 2022

Deep Learning
Training

n Loss contour

n Goal → find global minima

Toy example Complex DNN

Fig. 13 Fig. 14

© Jakob Abeßer, 2022

Deep Learning
Playground

n A neural network playground!

n https://playground.tensorflow.org

https://playground.tensorflow.org/

© Jakob Abeßer, 2022

Deep Learning
Convolutional Neural Networks (CNN)

n Convolutional layers

n “Convolution” → (local) dot-product
between filter and input

Fig. 16

InputFilter / Kernel

Feature Map

© Jakob Abeßer, 2022

Deep Learning
Convolutional Neural Networks (CNN)

n Convolutional layers

n “Convolution” → (local) dot-product
between filter and input

n Shared weights (fewer parameters)

Fig. 16

InputFilter / Kernel

Feature Map

© Jakob Abeßer, 2022

Deep Learning
Convolutional Neural Networks (CNN)

n Convolutional layers

n “Convolution” → (local) dot-product
between filter and input

n Shared weights (fewer parameters)

n Translation of input → translation of
activations (equivariance) Fig. 16

InputFilter / Kernel

Feature Map

© Jakob Abeßer, 2022

Deep Learning
Convolutional Neural Networks (CNN)

n Convolutional layers

n “Convolution” → (local) dot-product
between filter and input

n Shared weights (fewer parameters)

n Translation of input → translation of
activations (equivariance)

n Pooling → local aggregation / down-sampling

Fig. 16

Fig. 17

InputFilter / Kernel

Feature Map

© Jakob Abeßer, 2022

Deep Learning
Recurrent Neural Networks (RNN)

n Recurrent layers

n Model sequential data → model dynamic temporal behaviour

n Internal memory state(s) → memorize previous data for future
predictions

© Jakob Abeßer, 2022

Deep Learning
Recurrent Neural Networks (RNN)

n Recurrent layers

n Model sequential data → model dynamic temporal behaviour

n Internal memory state(s) → memorize previous data for future
predictions

n Vanishing gradient problem

n Gating mechanisms (Gated Recurrent Units (GRU), Long Short-term
Memory (LSTM)

Output

Input Fig. 18

© Jakob Abeßer, 2022

Deep Learning
Recurrent Neural Networks (RNN)

n Application Examples

n One-to-many: sequential music generation (given a starting note)

Fig. 19

© Jakob Abeßer, 2022

Deep Learning
Recurrent Neural Networks (RNN)

n Application Examples

n One-to-many: sequential music generation (given a starting note)

n Many-to-one: sentiment classification (positive vs. negative)

Fig. 19

© Jakob Abeßer, 2022

Deep Learning
Recurrent Neural Networks (RNN)

n Application Examples

n One-to-many: sequential music generation (given a starting note)

n Many-to-one: sentiment classification (positive vs. negative)

n Many-to-many: machine translation (e.g., Spanish to German)

Fig. 19

© Jakob Abeßer, 2022

Deep Learning
Autoencoders

n Symmetric architecture (decoder & encoder)

x y

Encoder Decoder

Input Output

Embeddings

Own

© Jakob Abeßer, 2022

Deep Learning
Autoencoders

n Symmetric architecture (decoder & encoder)

n Objective: minimize reconstruction error (e.g., mean squared error, MSE)

x y

MSE

Encoder Decoder

Input Output

Embeddings

Own

© Jakob Abeßer, 2022

Deep Learning
Autoencoders

n Symmetric architecture (decoder & encoder)

n Objective: minimize reconstruction error (e.g., mean squared error, MSE)

n Compression of input (embedding)

n Prioritize important information → learn useful representations

x y

MSE

Encoder Decoder

Input Output

Embeddings

Own

© Jakob Abeßer, 2022

Summary

n Introduction

n Terminology, application scenarios

n Learning Paradigms

n Unsupervised, supervised, self-supervised learning

n ML project pipeline

n Data collection, pre-processing, split

n Model selection, training, validation, testing

n Deep Learning

n DNN, CNN, RNN, Autoencoders

© Jakob Abeßer, 2022

References

Introducing Machine Learning. (2016). Retrieved from https://www.mathworks.com/content/dam/mathworks/tag-
team/Objects/i/88174_92991v00_machine_learning_section1_ebook.pdf

S. Legg, M. Hutter (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines. 17 (4):
391-444.

L. Samuel (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and
development. 3(3), 210-229

Srihari, S. N. (2020). Forward Propagation and Backward Propagation (Deep Learning Lecture). Retrieved from
https://cedar.buffalo.edu/~srihari/CSE676/6.5.0 Forward Backward.pdf

Virtanen, T., Plumbley, M. D., & Ellis, D. (Eds.). (2018). Computational Analysis of Sound Scenes and Events. Cham,
Switzerland: Springer International Publishing.

© Jakob Abeßer, 2022

Images

Fig. 1: [Machine Learning, 2016], p. 4, Fig. 2

Fig. 2: https://i0.wp.com/www.sthda.com/sthda/RDoc/figure/clustering/ partitioning-cluster-analysis-k-means-plot-4-
groups-1.png

Fig. 3: https://i.stack.imgur.com/hsilO.png (https://scikit-learn.org/stable/auto_examples/classification/
plot_classifier_comparison.html)

Fig. 4: https://miro.medium.com/max/975/1*OyYyr9qY-w8RkaRh2TKo0w.png (reproduced)

Fig. 5: https://lilianweng.github.io/lil-log/assets/images/self-sup-lecun.png

Fig. 6: https://www.asimovinstitute.org/wp-content/uploads/2019/04/NeuralNetworkZoo20042019.png

Fig. 7: https://www.educative.io/api/edpresso/shot/6668977167138816/image/5033807687188480

Fig. 8: [Virtanen, 2018], p. 170, Fig. 6.7

Fig. 9: https://miro.medium.com/max/915/1*SJPacPhP4KDEB1AdhOFy_Q.png

Fig. 10: https://www.skampakis.com/wp-content/uploads/2018/03/simple_neural_network_vs_deep_learning.jpg

Fig. 11: https://pic4.zhimg.com/80/v2-057b248288a8af2f01272a956f862873_1440w.png

Fig. 12: https://blog.e-kursy.it/deeplearning4j-
workshop/video/html/presentation_specific/img/4_activation_functions.png

© Jakob Abeßer, 2022

Images

Fig. 13: https://blog.paperspace.com/content/images/2018/05/challenges-1.png

Fig. 14: https://www.cs.umd.edu/~tomg/img/landscapes/noshort.png

Fig. 15: https://blog.paperspace.com/content/images/2018/05/grad.png

Fig. 16: https://www.wandb.com/articles/intro-to-cnns-with-wandb

Fig. 17: https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/

Fig. 18: https://wiki.tum.de/download/attachments/22578349/RNN1.png

Fig. 19: https://stanford.edu/~shervine/teaching/cs-230/illustrations/architecture-rnn-ltr.png

Fig. 20: [Srihari, 2020], p.8, (Fig. 1)

© Jakob Abeßer, 2022

Thank you!

n Any questions?

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de

