Machine Listening for Music and Sound Analysis

Lecture 2 – Machine Learning/Deep Learning

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

Learning Objectives

- Introduction
- Learning paradigms
- Machine learning (ML) project pipeline
- Deep learning

Introduction

Goals

- "...give computers the ability to learn without being explicitly programmed" [Samuels, 1959]
- Learning structures in given (un)labeled data to make predictions on new / unseen data
- Paradigm change
 - Before: manually designed / general-purpose features
 - Now: joint representation learning (features) & data modeling (classification)

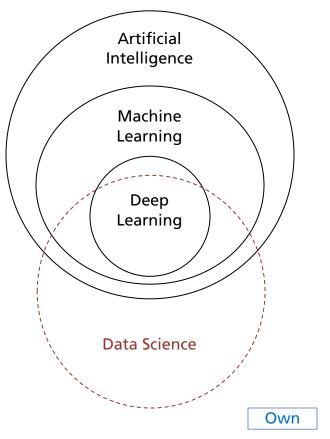
Related disciplines

Statistics, data science, optimization

Introduction Terminology

Artificial Intelligence (AI)

- "an agent's ability to achieve goals in a wide range of environments" [Legg & Hutter, 2007]
- Machine Learning (ML)
 - Pattern recognition, data modeling, learning, prediction
- Deep Learning (DL)
 - (Brain-inspired) artificial neural networks (ANN)
- Data Science
 - Knowledge extraction from data



Introduction Application Scenarios

- Computational finance (credit scoring, algorithmic trading)
- Computer vision (face & object recognition, motion detection)
- Computational biology (tumor detection, drug discovery, DNA sequencing)

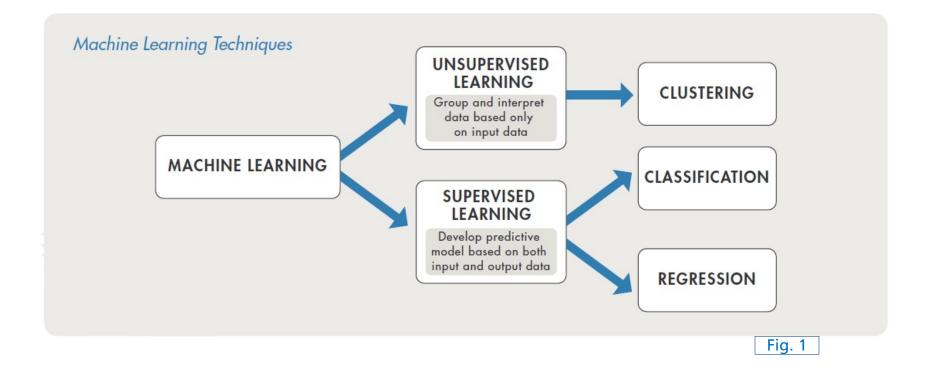
Introduction Application Scenarios

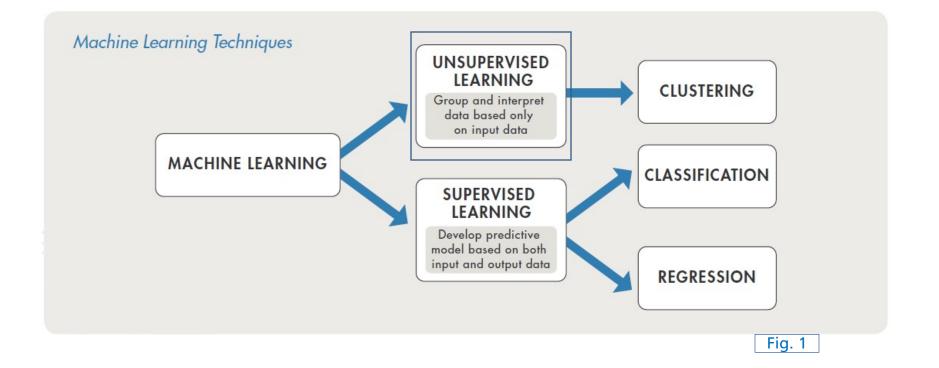
- Computational finance (credit scoring, algorithmic trading)
- Computer vision (face & object recognition, motion detection)
- Computational biology (tumor detection, drug discovery, DNA sequencing)
- Energy (price & load forecasting)
- Predictive maintenance (automotive, aerospace, manufacturing)

Introduction Application Scenarios

- Computational finance (credit scoring, algorithmic trading)
- Computer vision (face & object recognition, motion detection)
- Computational biology (tumor detection, drug discovery, DNA sequencing)
- Energy (price & load forecasting)
- Predictive maintenance (automotive, aerospace, manufacturing)
- Natural language processing (sentiment classification, text search, translation)
- Machine listening (music transcription, instrument recognition, sound event detection, acoustic scene classification)

Learning Paradigms





Goal

Find hidden structure and patterns in data

No annotations available

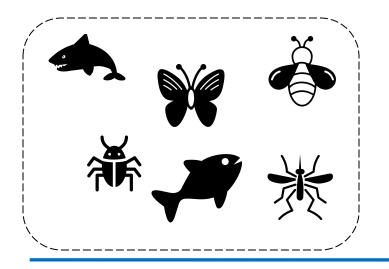
Goal

Find hidden structure and patterns in data

No annotations available

Clustering

Grouping of **similar** data instances



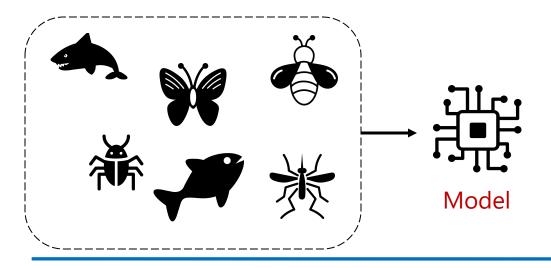
Goal

Find hidden structure and patterns in data

No annotations available

Clustering

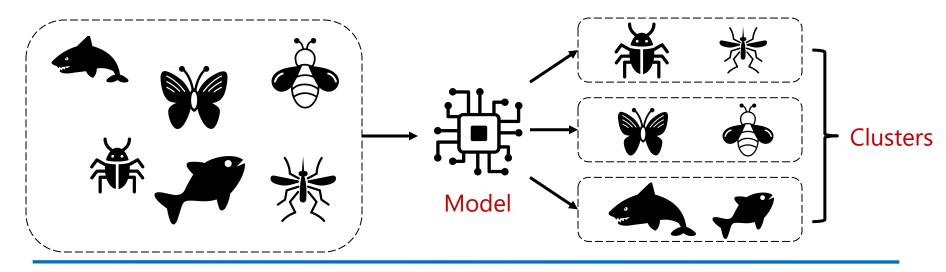
Grouping of **similar** data instances



Goal

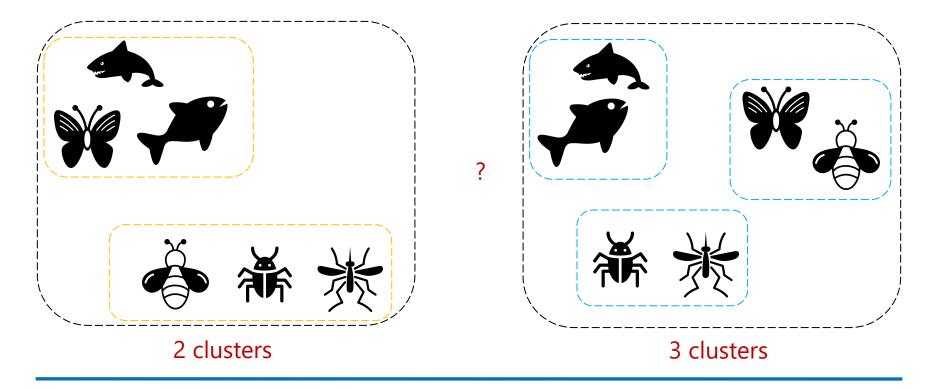
Find hidden structure and patterns in data

- No annotations available
- Clustering
 - **Grouping** of **similar** data instances

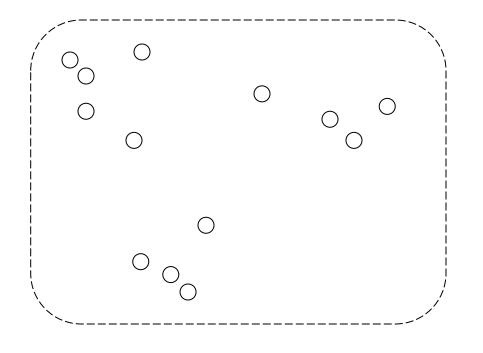


Challenges

• What is the **optimal number of clusters**?

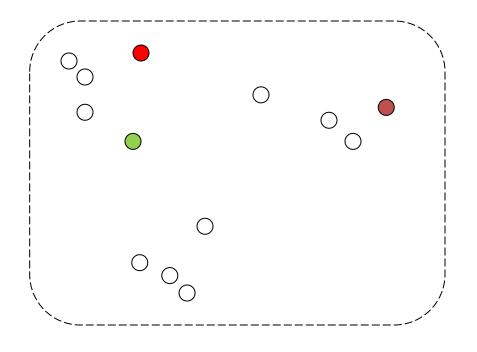


- K-means clustering
 - Initialize K "means" randomly (=cluster centroids)



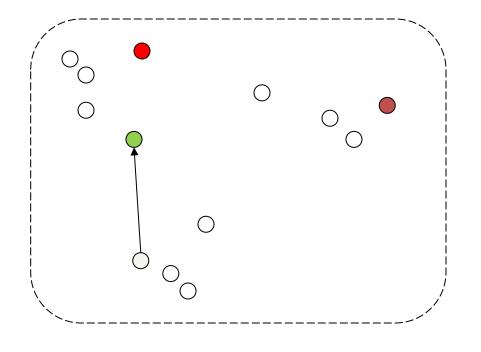
K-means clustering

■ *K*=3



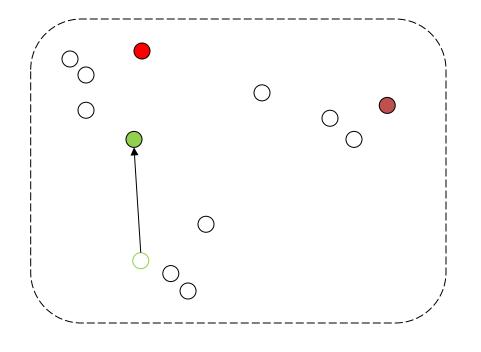
K-means clustering

Assignment: assign each data point to its closest mean



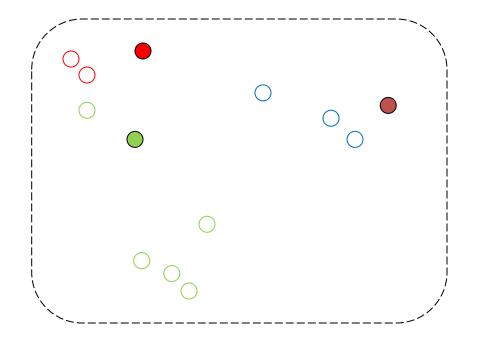
K-means clustering

Assignment: assign each data point to its closest mean



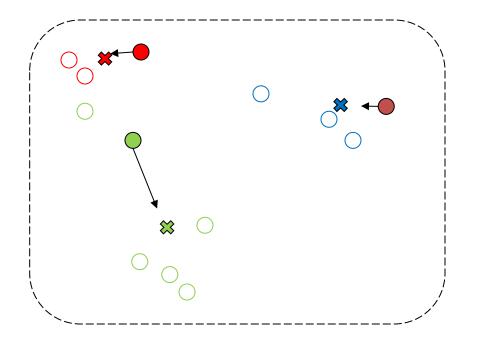
K-means clustering

Assignment: assign each data point to its closest mean



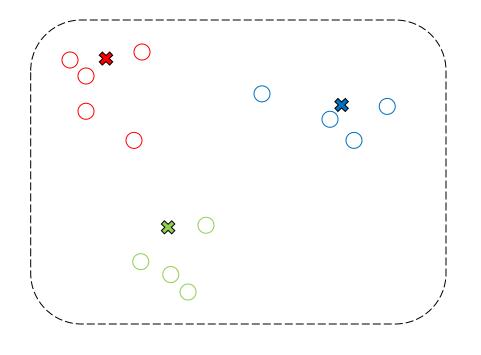
K-means clustering

Update: update mean by average over all assigned data points

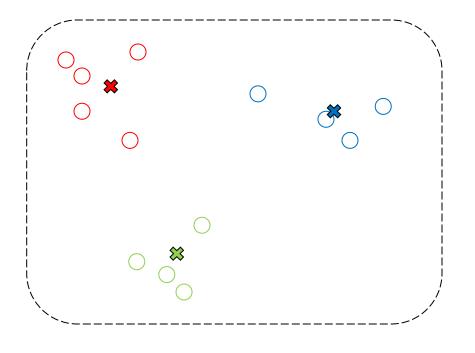


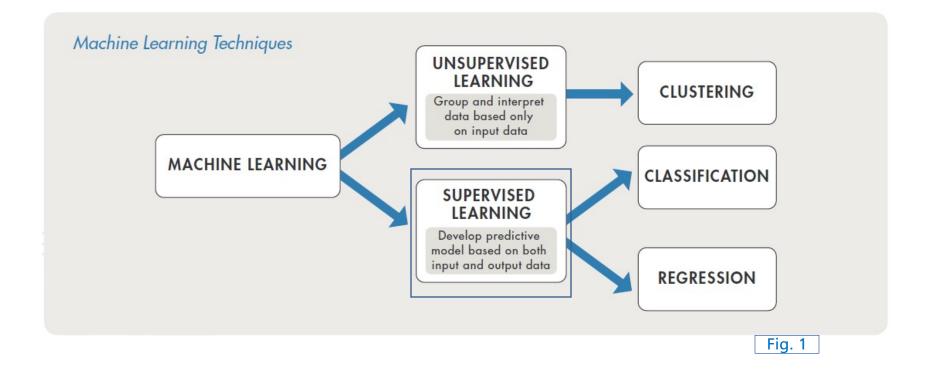
K-means clustering

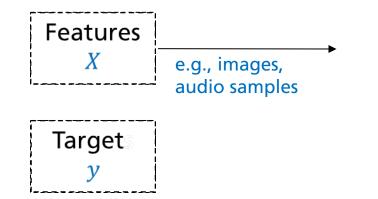
Assignment: re-assign data points to closest mean

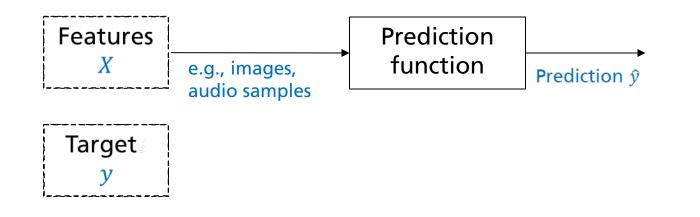


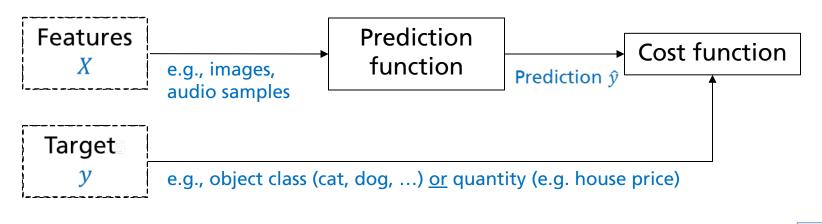
- K-means clustering
 - Update: re-assign data points to closest mean (repeat until convergence)

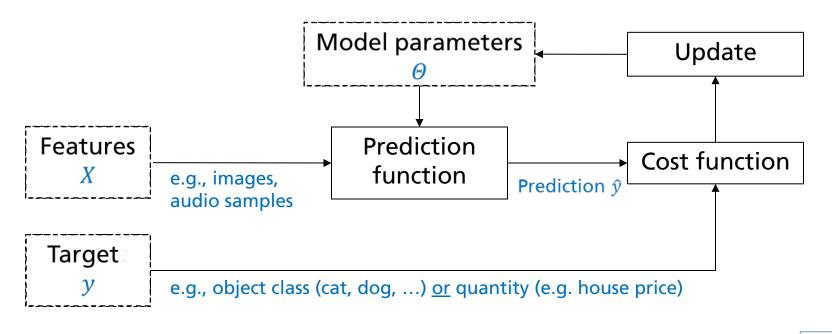


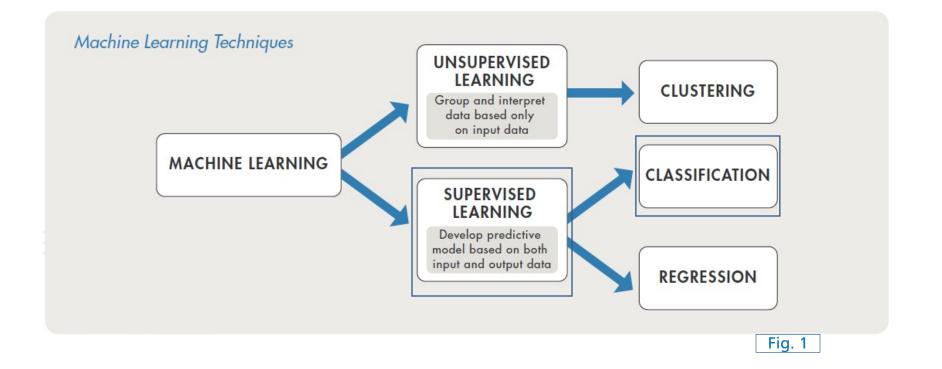












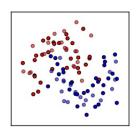
[2]

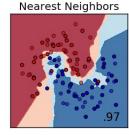
Predict one or multiple categorical labels from features

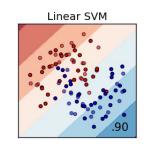
■ Examples → music genre, instrument(s), key

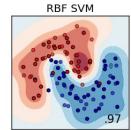
Predict one or multiple categorical labels from features

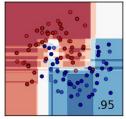
- Examples → music genre, instrument(s), key
- Feature space modeling (Example: 2 classes)





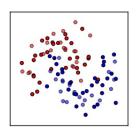


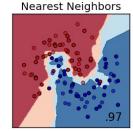




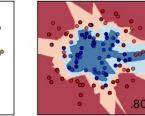
Predict one or multiple categorical labels from features

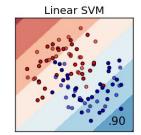
- Examples → music genre, instrument(s), key
- Feature space modeling (Example: 2 classes)



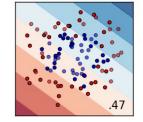


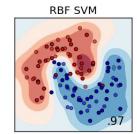
Nearest Neighbors



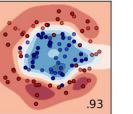


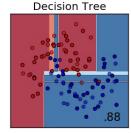
Linear SVM



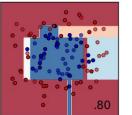


RBF SVM

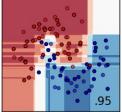




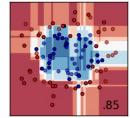
Decision Tree



Random Forest

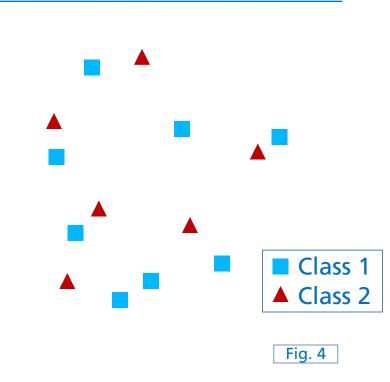


Random Forest

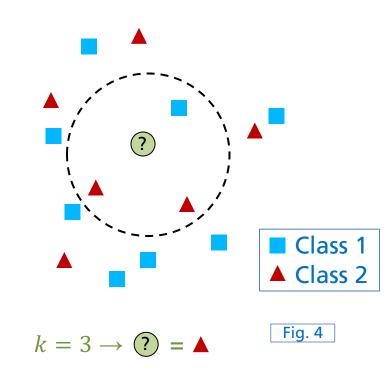


- Example: k-Nearest Neighbors
 - Training → Store all examples

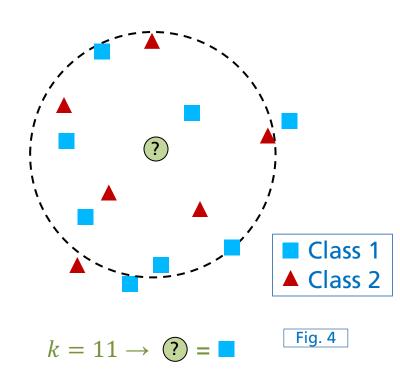
- Example: k-Nearest Neighbors
 - Training → Store all examples



- Example: k-Nearest Neighbors
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k clostest training data items

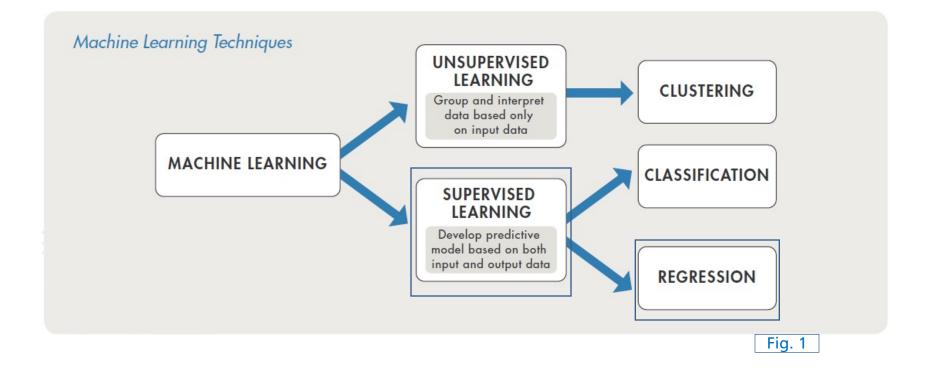


- Example: k-Nearest Neighbors
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k clostest training data items



- Example: k-Nearest Neighbors
 - Training → Store all examples
 - Test → Assign test item to dominant class label of the k clostest training data items
- Distance measures
 - Euclidean distance, Manhatten distance, cosine distance, …

Learning Paradigms Supervised Learning



Learning Paradigms Supervised Learning - Regression

Goal

- Predict a dependent (response) variable given one or multiple independent variables (features)
- Continuous quantities

Examples

Univariate (linear) regression:

Learning Paradigms Supervised Learning - Regression

Goal

- Predict a dependent (response) variable given one or multiple independent variables (features)
- Continuous quantities

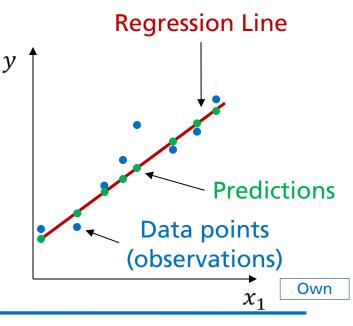
Examples

Univariate (linear) regression:

$$y \approx \beta_0 + \beta_1 x_1$$

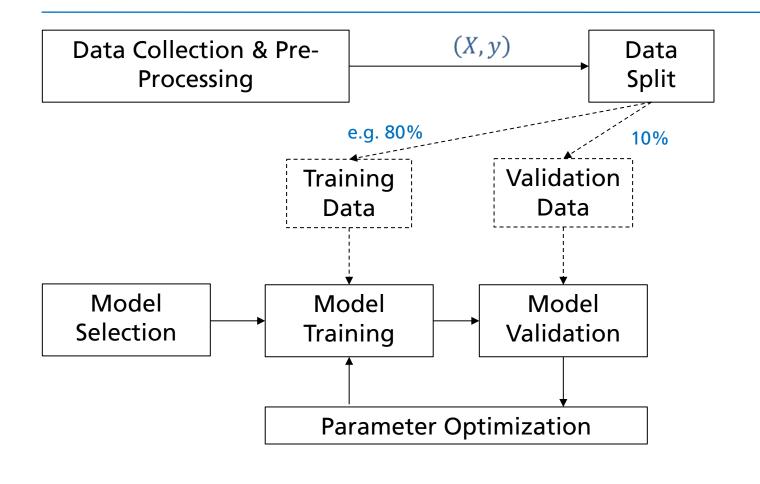
$$\beta_0 \rightarrow bias$$

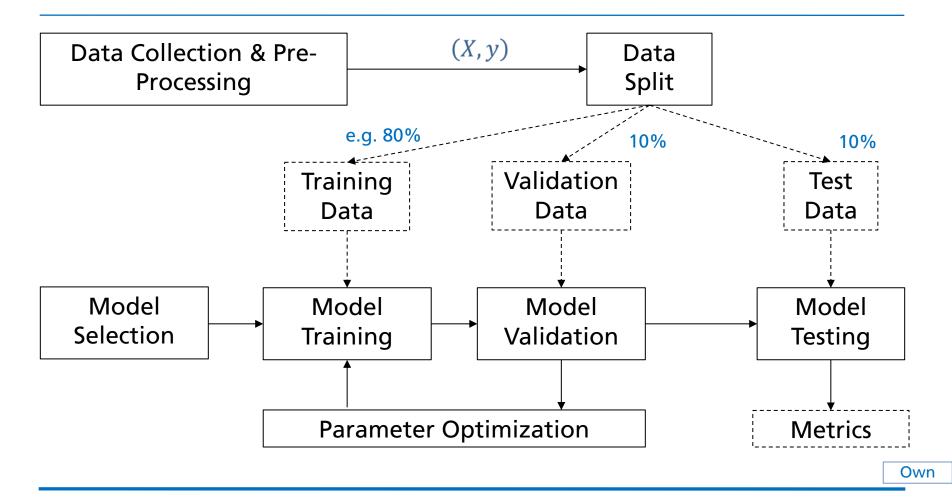
$$\blacksquare \beta_1 \rightarrow \mathsf{weight}$$



Data Collection & Pre-Processing

Data Collection & Pre-Processing Data Split





Training Set

Model learns from this data

Training Set

Model learns from this data

Validation / Development Set

Used to fine-tune the model (hyper)parameters

Model occasionally sees but does not learn from this data

Training Set

Model learns from this data

Validation / Development Set

Used to fine-tune the model (hyper)parameters

Model occasionally sees but does not learn from this data

Test set

- Only used once after the model training & tuning is completed
- Should reflect the targeted real-world use case for the model

Training Set

Model learns from this data

Validation / Development Set

Used to fine-tune the model (hyper)parameters

- Model occasionally sees but does not learn from this data
- Test set
 - Only used once after the model training & tuning is completed
 - Should reflect the targeted real-world use case for the model

Common split ratios

80/10/10% or even 98/1/1% (for large datasets)

ML Project Pipeline Data Collection & Pre-Processing

Data collection

- Check for available data resources for given (or related) task
- Collect / record / annotate new data (if necessary)
- Ensure data variability
 - Example (from acoustic condition monitoring) → include different motor engine types & conditions, recording locations, microphones, ...

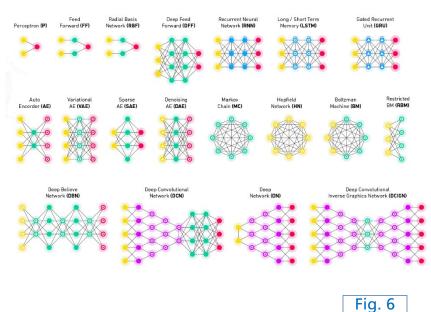
ML Project Pipeline Data Collection & Pre-Processing

Data collection

- Check for available data resources for given (or related) task
- Collect / record / annotate new data (if necessary)
- Ensure data variability
 - Example (from acoustic condition monitoring) → include different motor engine types & conditions, recording locations, microphones, ...
- Data cleanup / pre-processing
 - Remove errors, silence, empty files, …
 - Balance dataset (proportions among class examples)
 - Normalize (depends on the model)

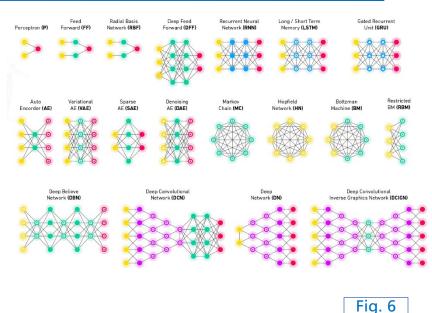
ML Project Pipeline Model Selection

- Model Types (SVM, GMM, logistic regression, DNNs)
- Hyperparameters (SVM kernel functions, DNN layer types)



ML Project Pipeline Model Selection

- Model Types (SVM, GMM, logistic regression, DNNs)
- Hyperparameters (SVM kernel functions, DNN layer types)
- Constraints from application scenario
 - Model complexity (memory, training time, training data amount)



ML Project Pipeline Model Selection

- Model Types (SVM, GMM, logistic regression, DNNs)
- Hyperparameters (SVM kernel functions, DNN layer types)
- Constraints from application scenario
 - Model complexity (memory, training time, training data amount)
- Feature pre-processing depends on model type
- Use simple models for simple tasks

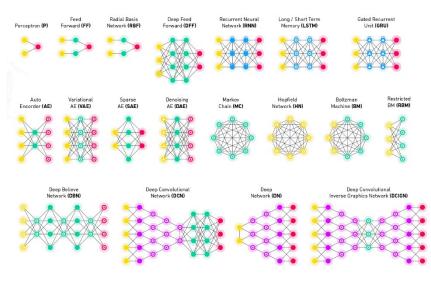


Fig. 6

Iterative process

Typically: start with random parameter initialization

Iterative process

- Typically: start with random parameter initialization
- Use (batches of) training data to iteratively improve model predictions (optimization)
 - Learn from examples

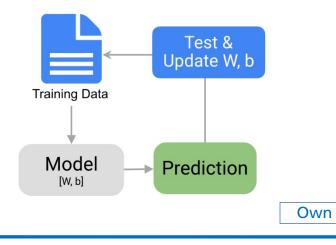
Iterative process

- Typically: start with random parameter initialization
- Use (batches of) training data to iteratively improve model predictions (optimization)
 - Learn from examples
- Update model parameters according to loss function

Example: linear regression

$$y \approx \beta_0 + \beta_1 x_1$$

Training loop

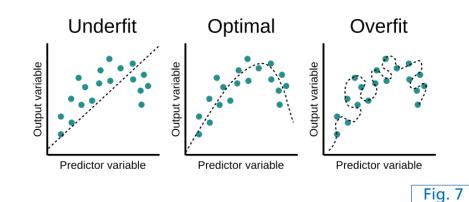


ML Project Pipeline Model Validation

Regular model evaluation each or multiple training iteration

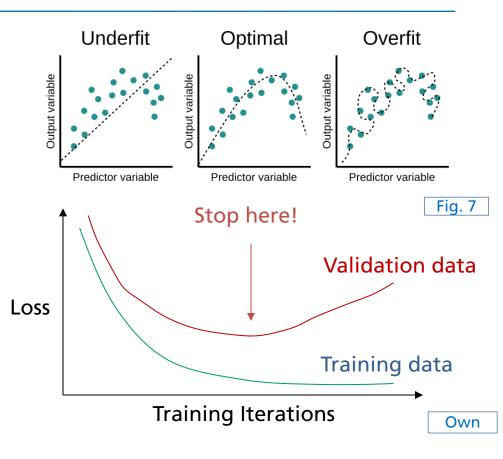
ML Project Pipeline Model Validation

Regular model evaluation each or multiple training iteration



ML Project Pipeline Model Validation

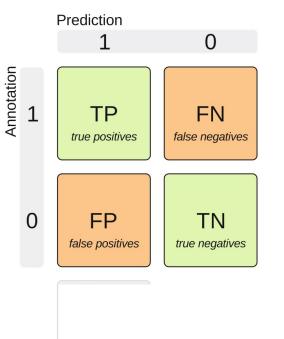
- Regular model evaluation each or multiple training iteration
- Helps to
 - optimize model (hyper)parameters
 - detect overfitting on training data
 - stop the training



ML Project Pipeline Model Testing

Example: Binary classification evaluation

- True/false positives (TP/FP)
- True/false negatives (TN/FN)



ML Project Pipeline Model Testing

Example: Binary classification evaluation

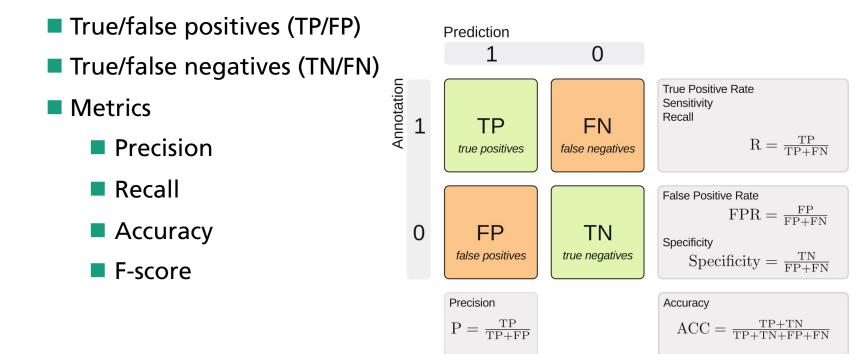
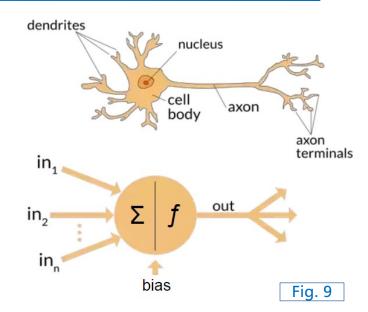
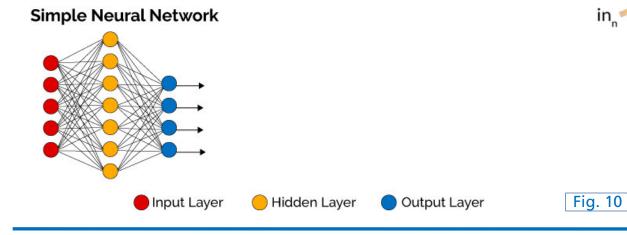


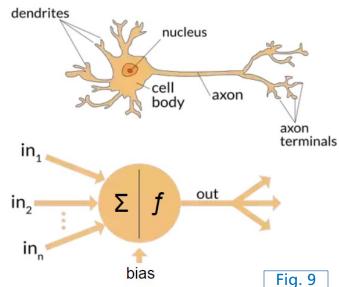
Fig. 8

- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing

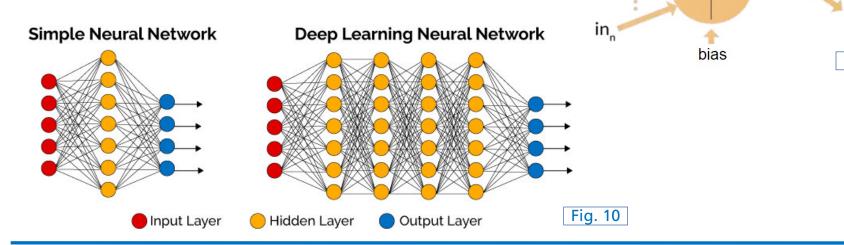


- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing
- Shallow networks





- Artificial neural networks → mimic brain processing
 - Connected neurons
 - Weighted input summation
 - Non-linear processing
- Shallow networks → deep networks



dendrites

in₁

in₂

nucleus

axon

out

axon terminals

Fig. 9

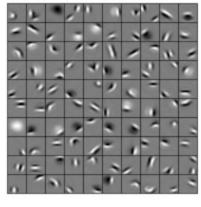
cell

f

Σ

body

- Hierarchical feature learning
 - Example (face recognition)



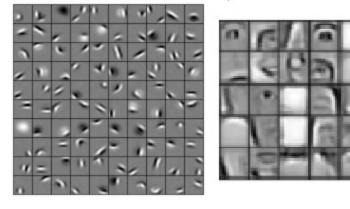
Edges, curves

Fig. 11

First layers

Final layers

- Hierarchical feature learning
 - Example (face recognition)



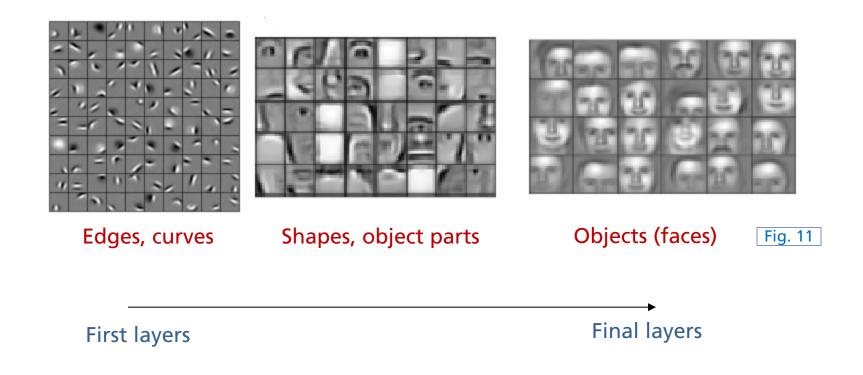
Edges, curves

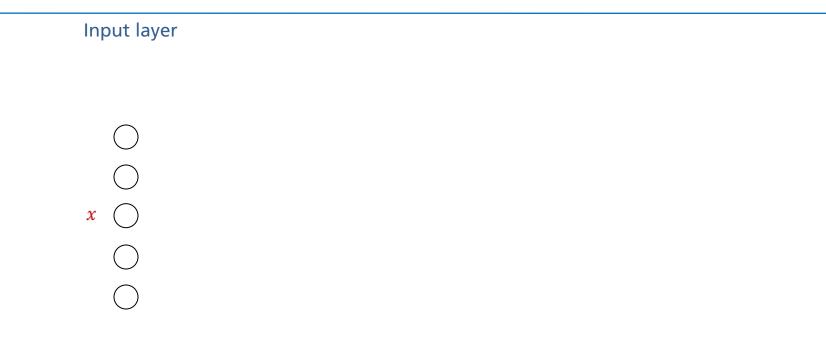
Shapes, object parts

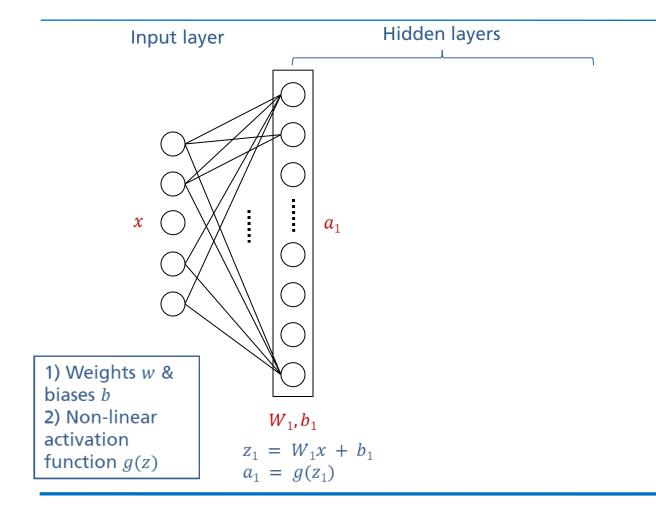
First layers

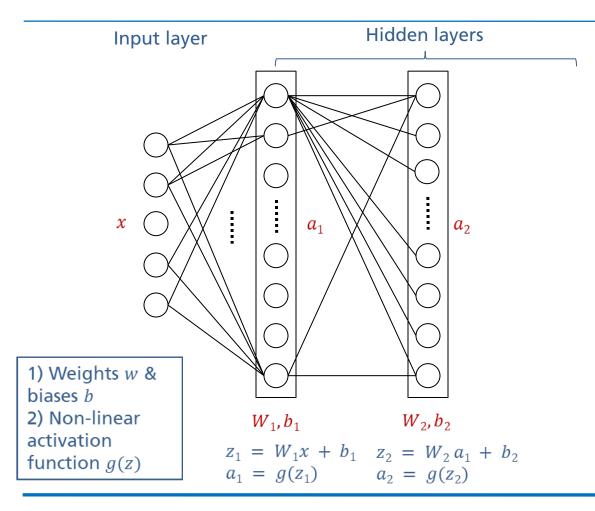
Final layers

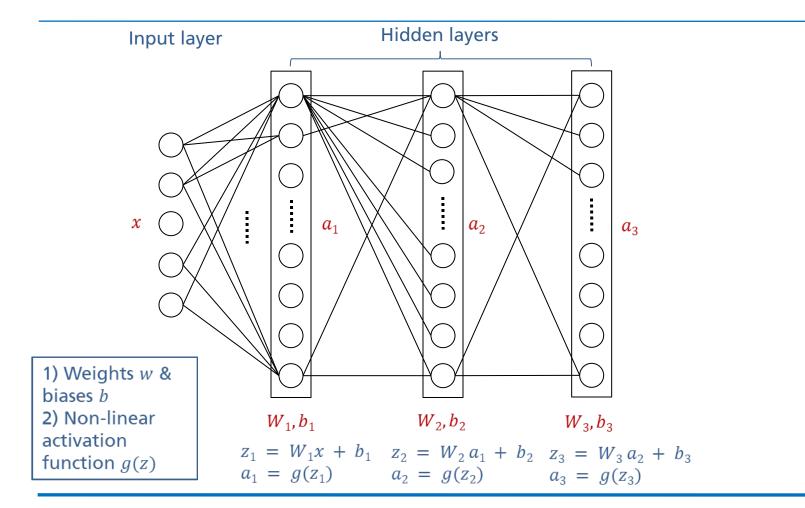
- Hierarchical feature learning
 - Example (face recognition)

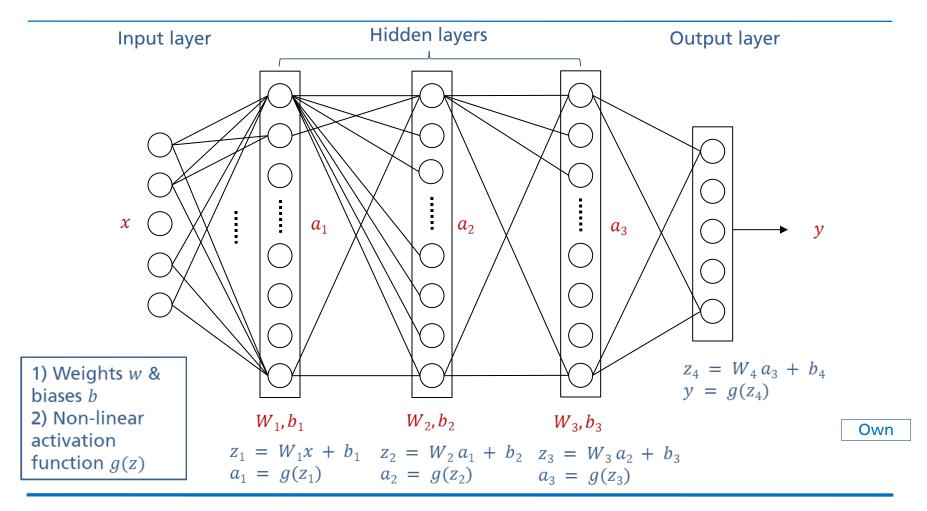






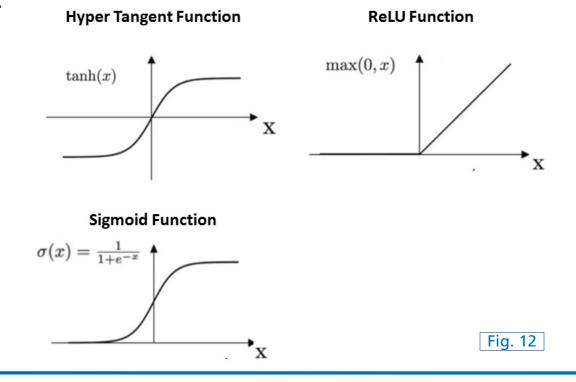




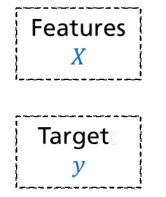


Deep Learning Activation Functions

- Activation functions add non-linearity
- Make networks more powerful in (complex) pattern recognition
- Examples:

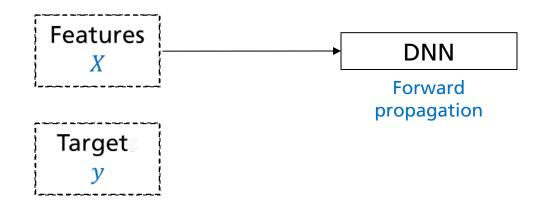


Overview



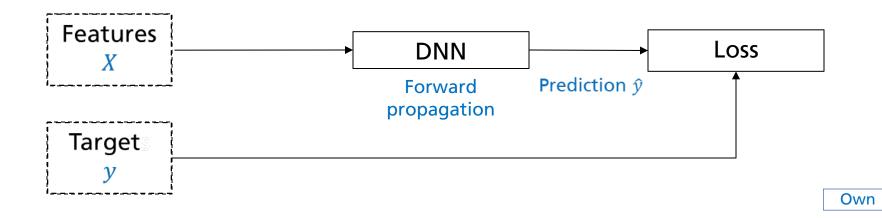
Own

Overview

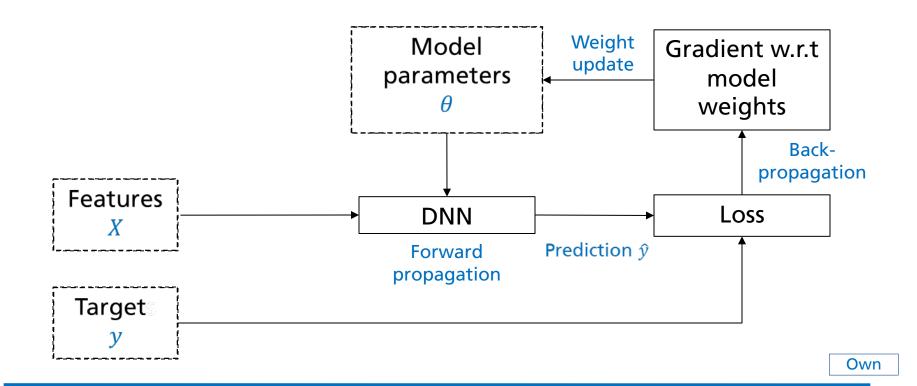


Own

Overview

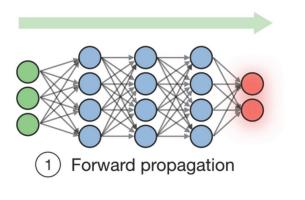


Overview



■ Forward propagation → propagate batch of training data through the network → compute loss (compare to targets)

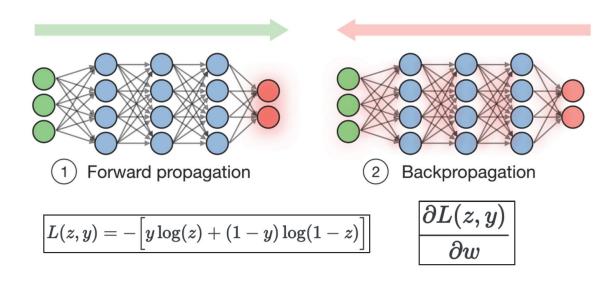
Fig. 20



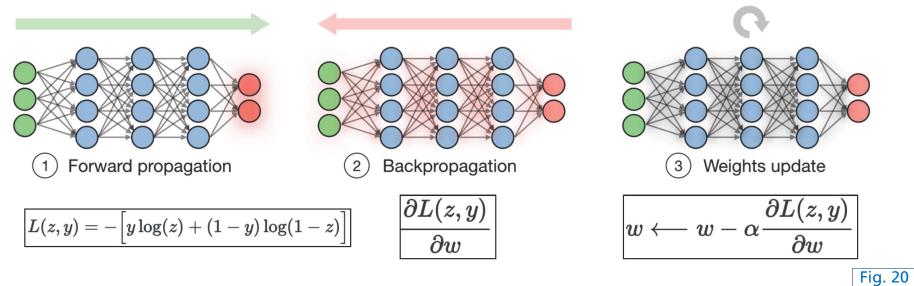
$$\Big|L(z,y)=-\Big[y\log(z)+(1-y)\log(1-z)\Big]$$

- Forward propagation → propagate batch of training data through the network → compute loss (compare to targets)
- Backpropagation → backpropagate loss → compute gradients of loss w.r.t. weights

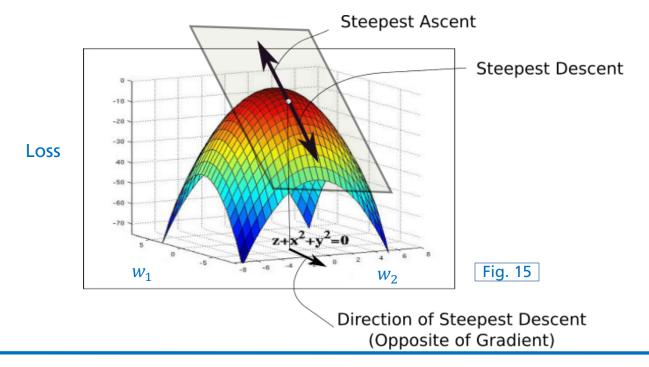
Fig. 20



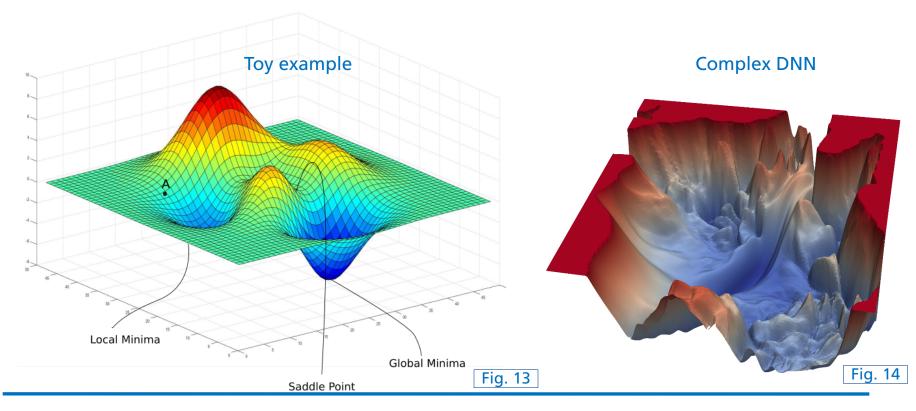
- Forward propagation → propagate batch of training data through the network → compute loss (compare to targets)
- Backpropagation → backpropagate loss → compute gradients of loss w.r.t. weights
- Weights update \rightarrow use gradients & learning rate to update weights



- Gradient descent
 - Move in opposite direction of gradient
 - Learning rate effects step size



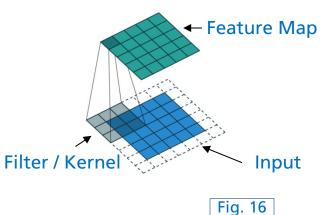
- Loss contour
 - **Goal** \rightarrow find global minima



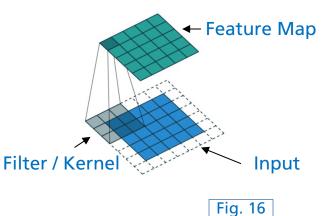
Deep Learning Playground

- A neural network playground!
 - <u>https://playground.tensorflow.org</u>

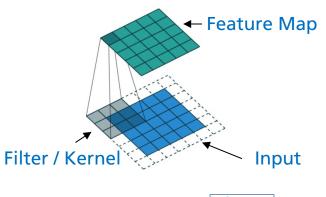
- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input



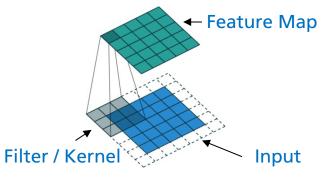
- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input
 - Shared weights (fewer parameters)



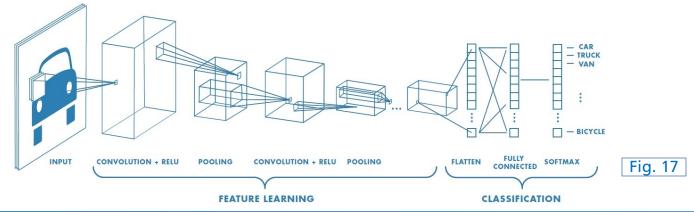
- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input
 - Shared weights (fewer parameters)
 - Translation of input → translation of activations (equivariance)



- Convolutional layers
 - "Convolution" → (local) dot-product between filter and input
 - Shared weights (fewer parameters)
 - Translation of input → translation of activations (equivariance)

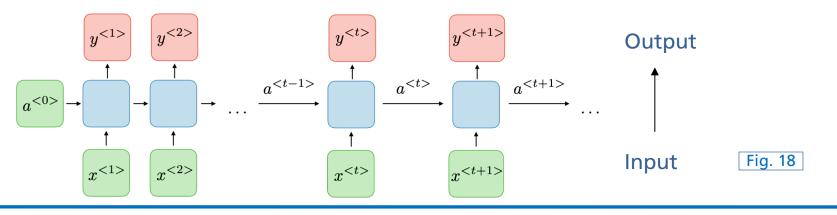


Pooling \rightarrow local aggregation / down-sampling



- Recurrent layers
 - Model sequential data \rightarrow model dynamic temporal behaviour
 - Internal memory state(s) → memorize previous data for future predictions

- Recurrent layers
 - Model sequential data \rightarrow model dynamic temporal behaviour
 - Internal memory state(s) → memorize previous data for future predictions
- Vanishing gradient problem
 - Gating mechanisms (Gated Recurrent Units (GRU), Long Short-term Memory (LSTM)



- Application Examples
 - One-to-many: sequential music generation (given a starting note)

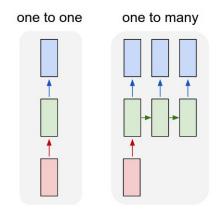
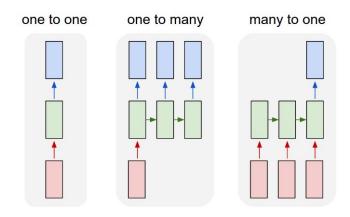
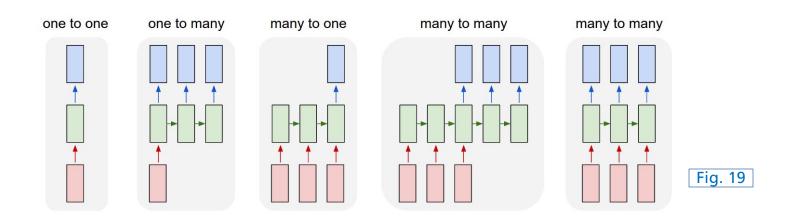


Fig. 19

- Application Examples
 - One-to-many: sequential music generation (given a starting note)
 - Many-to-one: sentiment classification (positive vs. negative)

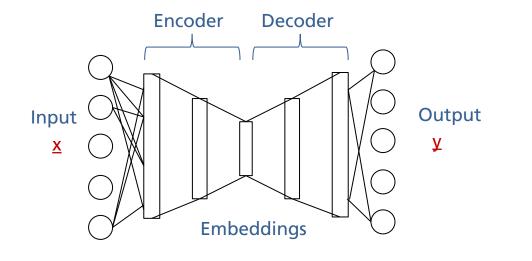


- Application Examples
 - One-to-many: sequential music generation (given a starting note)
 - Many-to-one: sentiment classification (positive vs. negative)
 - Many-to-many: machine translation (e.g., Spanish to German)



Deep Learning Autoencoders

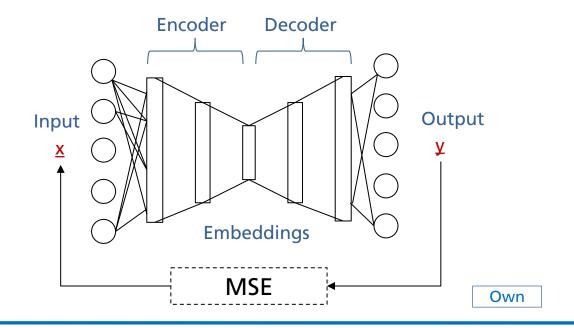
Symmetric architecture (decoder & encoder)



Own

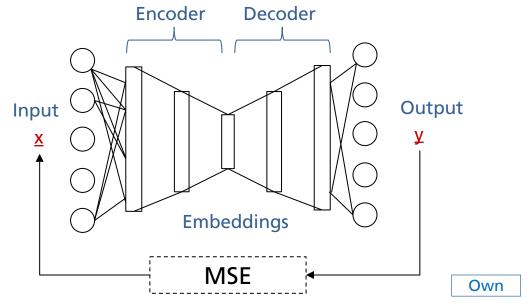
Deep Learning Autoencoders

- Symmetric architecture (decoder & encoder)
- Objective: minimize reconstruction error (e.g., mean squared error, MSE)



Deep Learning Autoencoders

- Symmetric architecture (decoder & encoder)
- Objective: minimize reconstruction error (e.g., mean squared error, MSE)
- Compression of input (embedding)
- Prioritize important information → learn useful representations



Summary

Introduction

Terminology, application scenarios

Learning Paradigms

Unsupervised, supervised, self-supervised learning

ML project pipeline

Data collection, pre-processing, split

Model selection, training, validation, testing

Deep Learning

DNN, CNN, RNN, Autoencoders

References

Introducing Machine Learning. (2016). Retrieved from https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/i/88174_92991v00_machine_learning_section1_ebook.pdf

S. Legg, M. Hutter (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines. 17 (4): 391-444.

L. Samuel (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development. 3(3), 210-229

Srihari, S. N. (2020). Forward Propagation and Backward Propagation (Deep Learning Lecture). Retrieved from https://cedar.buffalo.edu/~srihari/CSE676/6.5.0 Forward Backward.pdf

Virtanen, T., Plumbley, M. D., & Ellis, D. (Eds.). (2018). *Computational Analysis of Sound Scenes and Events*. Cham, Switzerland: Springer International Publishing.

Images

Fig. 1: [Machine Learning, 2016], p. 4, Fig. 2

Fig. 2: https://i0.wp.com/www.sthda.com/sthda/RDoc/figure/clustering/ partitioning-cluster-analysis-k-means-plot-4-groups-1.png

Fig. 3: https://i.stack.imgur.com/hsilO.png (https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html)

Fig. 4: https://miro.medium.com/max/975/1*OyYyr9qY-w8RkaRh2TKo0w.png (reproduced)

Fig. 5: https://lilianweng.github.io/lil-log/assets/images/self-sup-lecun.png

- Fig. 6: https://www.asimovinstitute.org/wp-content/uploads/2019/04/NeuralNetworkZoo20042019.png
- Fig. 7: https://www.educative.io/api/edpresso/shot/6668977167138816/image/5033807687188480
- Fig. 8: [Virtanen, 2018], p. 170, Fig. 6.7
- Fig. 9: https://miro.medium.com/max/915/1*SJPacPhP4KDEB1AdhOFy_Q.png
- Fig. 10: https://www.skampakis.com/wp-content/uploads/2018/03/simple_neural_network_vs_deep_learning.jpg
- Fig. 11: https://pic4.zhimg.com/80/v2-057b248288a8af2f01272a956f862873_1440w.png

Fig. 12: https://blog.e-kursy.it/deeplearning4jworkshop/video/html/presentation_specific/img/4_activation_functions.png

Images

- Fig. 13: https://blog.paperspace.com/content/images/2018/05/challenges-1.png
- Fig. 14: https://www.cs.umd.edu/~tomg/img/landscapes/noshort.png
- Fig. 15: https://blog.paperspace.com/content/images/2018/05/grad.png
- Fig. 16: https://www.wandb.com/articles/intro-to-cnns-with-wandb
- Fig. 17: https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
- Fig. 18: https://wiki.tum.de/download/attachments/22578349/RNN1.png
- Fig. 19: https://stanford.edu/~shervine/teaching/cs-230/illustrations/architecture-rnn-ltr.png
- Fig. 20: [Srihari, 2020], p.8, (Fig. 1)

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de