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Learning Objectives

B Introduction
B Learning paradigms
B Machine learning (ML) project pipeline

M Deep learning




Introduction

B Goals

m “..give computers the ability to learn without being explicitly
programmed” [Samuels, 1959]

M Learning structures in given (un)labeled data to make
predictions on new / unseen data

B Paradigm change
M Before: manually designed / general-purpose features

B Now: joint representation learning (features) & data modeling
(classification)

B Related disciplines

M Statistics, data science, optimization




Introduction
Terminology

m Artificial Intelligence (Al)

Artificial
B “an agent’s ability to achieve goals Intelligence
in a wide range of environments”

[Legg & Hutter, 2007]
B Machine Learning (ML)

Machine
Learning

M Pattern recognition, data
modeling, learning, prediction

Learning

B Deep Learning (DL)

M (Brain-inspired) artificial neural \\
networks (AN N) Data Science

B Data Science

® Knowledge extraction from data Own
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B Computational biology (tumor detection, drug discovery, DNA
sequencing)
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Introduction
Application Scenarios

B Computational finance (credit scoring, algorithmic trading)
® Computer vision (face & object recognition, motion detection)

B Computational biology (tumor detection, drug discovery, DNA
sequencing)

W Energy (price & load forecasting)
B Predictive maintenance (automotive, aerospace, manufacturing)

B Natural language processing (sentiment classification, text search,
translation)

B Machine listening (music transcription, instrument recognition, sound
event detection, acoustic scene classification)
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Learning Paradigms
Unsupervised Learning

H Goal
M Find hidden structure and patterns in data
B No annotations available

B Clustering

B Grouping of similar data instances

— Clusters




Learning Paradigms
Unsupervised Learning

B Challenges

B What is the optimal number of clusters?
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Learning Paradigms
Unsupervised Learning

B K-means clustering

M |nitialize K "means” randomly (=cluster centroids)
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Learning Paradigms
Unsupervised Learning

B K-means clustering
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Learning Paradigms
Unsupervised Learning

B K-means clustering

B Assignment: assign each data point to its closest mean
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Learning Paradigms
Unsupervised Learning

B K-means clustering

B Assignment: assign each data point to its closest mean
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Learning Paradigms
Unsupervised Learning

B K-means clustering

B Assignment: assign each data point to its closest mean
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Learning Paradigms
Unsupervised Learning

B K-means clustering

B Update: update mean by average over all assigned data points
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Learning Paradigms
Unsupervised Learning

B K-means clustering

B Assignment: re-assign data points to closest mean
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Learning Paradigms
Unsupervised Learning

B K-means clustering

B Update: re-assign data points to closest mean (repeat until

convergence)
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Learning Paradigms
Supervised Learning

Machine Learning Techniques

UNSUPERVISED
LEARNING

Group and interpret
data based only
on input data

MACHINE LEARNING

SUPERVISED
LEARNING
Develop predictive

model based on both
input and output data
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Learning Paradigms
Supervised Learning
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Supervised Learning

| Features | Prediction [ Cost function
| X | e.g. images, function Prediction § _
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Learning Paradigms
Supervised Learning

Model parameters
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Learning Paradigms

Supervised Learning - Classification

Machine Learning Techniques

MACHINE LEARNING

UNSUPERVISED
LEARNING

Group and interpret
data based only
on input data

S

CLUSTERING
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SUPERVISED
LEARNING
Develop predictive

model based on both
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Learning Paradigms
Supervised Learning - Classification

B Predict one or multiple categorical labels from features
M Examples — music genre, instrument(s), key

M Feature space modeling (Example: 2 classes)

Nearest Neighbors Linear SVM RBF SVM Decision Tree Random Forest
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B Example: k-Nearest Neighbors

M Training — Store all examples
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Learning Paradigms
Supervised Learning - Classification

B Example: k-Nearest Neighbors
B Training — Store all examples

M Test — Assign test item to
dominant class label of the k
clostest training data items
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Learning Paradigms
Supervised Learning - Classification

B Example: k-Nearest Neighbors
B Training — Store all examples

B Test — Assign test item to
dominant class label of the k
clostest training data items

B Distance measures

B Euclidean distance, Manhatten
distance, cosine distance, ...
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Machine Learning Techniques
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LEARNING
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Learning Paradigms
Supervised Learning - Regression

B Goal

M Predict a dependent (response)
variable given one or multiple
independent variables (features)

B Continuous quantities

M Examples
M Univariate (linear) regression:
By~=pB+Pix
W 3, — bias
® 3, — weight




Learning Paradigms
Supervised Learning - Regression

B Goal

M Predict a dependent (response)
variable given one or multiple
independent variables (features)

B Continuous quantities
M Examples
M Univariate (linear) regression:
By~ fo+f1x1
m 3, — bias

® 3, — weight

Regression Line

™ Predictions
*w«.__ Data points

(observations)

X4 Own
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Overview

Data Collection & Pre-
Processing
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X,y)

Processing

Data
Split
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Overview

Data Collection & Pre- X, y) Data
Processing 1 Split

€.9.80% 7 10% ~10%

Training | EVaIidation Test

Data . Data Data

v A 4 A 4
Model ‘ Model ‘ Model | Model
Selection | Training | Validation | Testing

T ,,

Parameter Optimization
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Data Split

B Training Set W

B Model learns from this data
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ML Project Pipeline
Data Split

B Training Set W
® Model learns from this data
M Validation / Development Set
M Used to fine-tune the model (hyper)parameters
B Model occasionally sees but does not learn from this data
B Testset N
M Only used once after the model training & tuning is completed
® Should reflect the targeted real-world use case for the model

B Common split ratios
m 80/10/10% or even 98/1/1% (for large datasets)




ML Project Pipeline

Data Collection & Pre-Processing

B Data collection
B Check for available data resources for given (or related) task
W Collect / record / annotate new data (if necessary)
B Ensure data variability

B Example (from acoustic condition monitoring) — include
different motor engine types & conditions, recording
locations, microphones, ...




ML Project Pipeline

Data Collection & Pre-Processing

B Data collection
B Check for available data resources for given (or related) task
W Collect / record / annotate new data (if necessary)
B Ensure data variability

B Example (from acoustic condition monitoring) — include
different motor engine types & conditions, recording
locations, microphones, ...

B Data cleanup / pre-processing
B Remove errors, silence, empty files, ...
M Balance dataset (proportions among class examples)

® Normalize (depends on the model)




ML Project Pipeline

Model Selection
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ML Project Pipeline

Model Selection

B Model Types (SVM, GMM, logistic
regression, DNNs)

B Hyperparameters (SVM kernel functions,
DNN layer types)

B Constraints from application scenario

B Model complexity (memory,
training time, training data
amount)
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ML Project Pipeline

Model Selection

B Model Types (SVM, GMM, logistic
regression, DNNs)

B Hyperparameters (SVM kernel functions,
DNN layer types)

B Constraints from application scenario

B Model complexity (memory,
training time, training data
amount)

M Feature pre-processing depends on model
type
B Use simple models for simple tasks
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ML Project Pipeline
Model Training

M [terative process
B Typically: start with random parameter initialization

B Use (batches of) training data to iteratively improve model
predictions (optimization)

M Learn from examples

B Update model parameters according to loss function




ML Project Pipeline
Model Training

M Example: linear regression

y = By + P1 X1

B Training loop

, Test &
Update W, b
Training Data

|

Model .| Prediction

(W, b]

Own




ML Project Pipeline
Model Validation

B Regular model evaluation each or
multiple training iteration




ML Project Pipeline
Model Validation

B Regular model evaluation each or Underfit Optimal Overfit
multiple training iteration i} . v o
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ML Project Pipeline
Model Validation

B Regular model evaluation each or Underfit Optimal Overfit
multiple training iteration . e e e
£ o000, g ‘a0t g L '-:.
® Helps to | Y| IV I
mi S| e gl % g e
® optimize model S| .» o| 4 of»
(h y p e r) p arameters Predictor variable Predictor variable Predictor variable
.y __F .7
® detect overfitting on 4 Stop here! =

training data
Validation data

M stop the training
Loss

Training data

»
»

Training Iterations own




ML Project Pipeline
Model Testing

B Example: Binary classification evaluation

W True/false positives (TP/FP) Prediction
B True/false negatives (TN/FN) _ . 0
E1 | TP FN
< true positives false negatives
0 FP TN
false positives true negatives




ML Project Pipeline
Model Testing

B Example: Binary classification evaluation

Y

B

W True/false positives (TP/FP) Prediction
: 1 0
W True/false negatives (TN/FN)
{ o 2\
Q
B Metrics g
1| TP FN
0= PFQCiSion <L true positives false negatives
B Recall
® Accuracy 0 FP TN
false positives true negatives
M F-score J L
Precision
1> = TPTEFP

True Positive Rate
Sensitivity
Recall

— TP
R = TP+FN

False Positive Rate

— FP
FPR = o

Specificity
ara G . TN
SpeClﬁClty = FP+FN

Accuracy

_ TP+ TN
ACC = TP4+TN+FP4+FN




Deep Learning
Introduction

m Artificial neural networks — mimic brain
processing

dendritqs
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B Connected neurons

B Weighted input summation
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Deep Learning
Introduction

B Artificial neural networks — mimic brain dendrites
processing

N
N = nucleus

B Connected neurons

B Weighted input summation aon
in terminals
B Non-linear processing A
. t
® Shallow networks in, 2 ==
Simple Neural Network in_

b

@ nput Layer () Hidden Layer @ Output Layer




Deep Learning

Introduction
B Artificial neural networks — mimic brain dendrites
. X~ Y 2
proceSSIng \,}\\\\;.\j(/ f nucleus ﬁ??:l’b
AV =
B Connected neurons - TR
2}'1\4?//"“,1\\' body axon V\S‘lv\\
B Weighted input summation h axon
. . in terminals
B Non-linear processing A
" t
® Shallow networks — deep networks in, 2
Simple Neural Network Deep Learning Neural Network in,
oas

@ nput Layer () Hidden Layer @ Output Layer




Deep Learning
Introduction

M Hierarchical feature learning

B Example (face recognition)

Edges, curves

»
»

First layers Final layers
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M Hierarchical feature learning

B Example (face recognition)

Edges, curves Shapes, object parts
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First layers Final layers
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Deep Learning
Introduction

M Hierarchical feature learning

B Example (face recognition)

Edges, curves Shapes, object parts Objects (faces)

»
»

First layers Final layers
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Deep Learning
Fully-connected (Deep) Neural Networks
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Input layer Hidden layers
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Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers
A
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biases b
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function g(z) a, = g(z1) a, = g9(z,)




Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers
A
f \
()
KN O
X O é a, i as
1) Weights w & \/Q/ \O
biases b
z)tNOrtHinear W1, b, W2 b, W3, by Own
activation
function g(2) 2y = Wix + by z; = Wya, + b, 73 = Wsa, + by
a; = 9(z,) a, = 9(2,) az = g(z3)




Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers Output layer
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biases b ’ ~ \OZ y = 9g(z4)
2) Non-linear W, b, W, b, W, by own
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Deep Learning
Activation Functions

B Activation functions add non-linearity

B Make networks more powerful in (complex) pattern recognition

B Examples:
Hyper Tangent Function RelLU Function

A

: ~) A
tanh(z) max (0, z)

v

v

Sigmoid Function

v

N
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B Overview
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Deep Learning

Training

B Overview
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Deep Learning
Training

B Forward propagation — propagate batch of training data through the
network — compute loss (compare to targets)

Forward propagation

L(zy) = —|ylog(2) + (1 — y) log(1 - 2)|




Deep Learning
Training

B Forward propagation — propagate batch of training data through the
network — compute loss (compare to targets)

B Backpropagation — backpropagate loss — compute gradients of loss
w.r.t. weights

@ Forward propagation @ Backpropagation
OL(z,
L(z,y) = — [ylog(Z) + (1 —y)log(1 — z)] M
ow




Deep Learning
Training

B Forward propagation — propagate batch of training data through the
network — compute loss (compare to targets)

B Backpropagation — backpropagate loss — compute gradients of loss
w.r.t. weights

B Weights update — use gradients & learning rate to update weights

@ PRIV Fipagaion @ Backpropagation @ Weights update
OL(z, AL (z,

L(z,y) = —[ylog(Z) + (1 — y) log(1 — z)] M o i 2 — B (2,9)
Ow Ow




Deep Learning
Training

B Gradient descent
B Move in opposite direction of gradient

M Learning rate effects step size

Steepest Ascent

———— Steepest Descent

Loss

w Ty,

\ Direction of Steepest Descent
(Opposite of Gradient)




Deep Learning
Training

B Loss contour

B Goal — find global minima

Toy example Complex DNN

\\SSSSTTHLERS
\\\v’g'\:;;;lll;";’:::““\‘ S
SN
) %

SR 2% 9
AN
SN
N\

A

Local Minima .

Global Minima

Saddle Point
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Deep Learning
Playground

B A neural network playground!

B https://playground.tensorflow.org



https://playground.tensorflow.org/

Deep Learning
Convolutional Neural Networks (CNN)

® Convolutional layers

B “Convolution” — (local) dot-product
between filter and input
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Convolutional Neural Networks (CNN)

® Convolutional layers

B “Convolution” — (local) dot-product
between filter and input

W Shared weights (fewer parameters)

P
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< Feature Map




Deep Learning
Convolutional Neural Networks (CNN)

® Convolutional layers

B “Convolution” — (local) dot-product
between filter and input

W Shared weights (fewer parameters)

M Translation of input — translation of
activations (equivariance)

P

Filter / Kerne\l'\:‘~'~:v;>.>'\”')

< Feature Map




Deep Learning
Convolutional Neural Networks (CNN)

® Convolutional layers

B “Convolution” — (local) dot-product
between filter and input

W Shared weights (fewer parameters)

M Translation of input — translation of
activations (equivariance)

B Pooling — local aggregation / down-sampling

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN

Filter / Kerne\l'\:‘i:v_u—i*'\”')

< Feature Map

P

— CAR
— TRUCK
— VAN

D D — BICYCLE

FULLY
connectep SOFTMAX o F|g 17

~

FEATURE LEARNING

~

CLASSIFICATION




Deep Learning
Recurrent Neural Networks (RNN)

B Recurrent layers
B Model sequential data — model dynamic temporal behaviour

M Internal memory state(s) — memorize previous data for future
predictions




Deep Learning
Recurrent Neural Networks (RNN)

B Recurrent layers
B Model sequential data — model dynamic temporal behaviour

M Internal memory state(s) — memorize previous data for future
predictions

B Vanishing gradient problem

B Gating mechanisms (Gated Recurrent Units (GRU), Long Short-term
Memory (LSTM)

) ' - (
.
s D Tﬁ ( T 0 a<t—1> - T B a<t> T a<t+1>
a<0>—> — — _ - }
L ) )
f f f ot
e | £<2> p<t> $<t+1>‘ Input Fig. 18




Deep Learning
Recurrent Neural Networks (RNN)

M Application Examples

B One-to-many: sequential music generation (given a starting note)

one to one one to many
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M Application Examples
B One-to-many: sequential music generation (given a starting note)

B Many-to-one: sentiment classification (positive vs. negative)

one to one one to many many to one




Deep Learning
Recurrent Neural Networks (RNN)

M Application Examples
B One-to-many: sequential music generation (given a starting note)
B Many-to-one: sentiment classification (positive vs. negative)

B Many-to-many: machine translation (e.g., Spanish to German)

one to one one to many many to one many to many many to many




Deep Learning
Autoencoders

® Symmetric architecture (decoder & encoder)

Encoder Decoder
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Deep Learning
Autoencoders

® Symmetric architecture (decoder & encoder)

B Objective: minimize reconstruction error (e.g., mean squared error, MSE)
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Deep Learning
Autoencoders

® Symmetric architecture (decoder & encoder)

B Objective: minimize reconstruction error (e.g., mean squared error, MSE)

B Compression of input (embedding)

M Prioritize important information — learn useful representations
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Summary

¥ Introduction
B Terminology, application scenarios
B Learning Paradigms
B Unsupervised, supervised, self-supervised learning
B ML project pipeline
B Data collection, pre-processing, split
B Model selection, training, validation, testing
B Deep Learning
B DNN, CNN, RNN, Autoencoders




References

Introducing Machine Learning. (2016). Retrieved from https://www.mathworks.com/content/dam/mathworks/tag-
team/Objects/i/88174_92991v00_machine_learning_section1_ebook.pdf

S. Legg, M. Hutter (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines. 17 (4):
391-444.

L. Samuel (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and
development. 3(3), 210-229

Srihari, S. N. (2020). Forward Propagation and Backward Propagation (Deep Learning Lecture). Retrieved from
https://cedar.buffalo.edu/~srihari/CSE676/6.5.0 Forward Backward.pdf

Virtanen, T., Plumbley, M. D., & Ellis, D. (Eds.). (2018). Computational Analysis of Sound Scenes and Events. Cham,
Switzerland: Springer International Publishing.




Images

Fig. 1: [Machine Learning, 2016], p. 4, Fig. 2

Fig. 2: https://i0.wp.com/www.sthda.com/sthda/RDoc/figure/clustering/ partitioning-cluster-analysis-k-means-plot-4-
groups-1.png

Fig. 3: https://i.stack.imgur.com/hsilO.png (https:/scikit-learn.org/stable/auto_examples/classification/
plot_classifier_comparison.html)

Fig. 4: https://miro.medium.com/max/975/1*0yYyr9qY-w8RkaRh2TKoOw.png (reproduced)

Fig. 5: https:/lilianweng.github.io/lil-log/assets/images/self-sup-lecun.png

(o]

Fig. 6: https://www.asimovinstitute.org/wp-content/uploads/2019/04/NeuralNetworkZ0020042019.png

Fig. 7: https://www.educative.io/api/edpresso/shot/6668977167138816/image/5033807687 188480

Fig. 8: [Virtanen, 2018], p. 170, Fig. 6.7

Fig. 9: https://miro.medium.com/max/915/1*SJPacPhP4KDEB1AdhOFy_Q.png

Fig. 10: https://www.skampakis.com/wp-content/uploads/2018/03/simple_neural_network_vs_deep_learning.jpg
Fig. 11: https://pic4.zhimg.com/80/v2-057b248288a8af2f01272a956f862873_1440w.png

Fig. 12: https://blog.e-kursy.it/deeplearning4j-
workshop/video/html/presentation_specific/img/4_activation_functions.png




Images

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

13:
14:
15:
16:
17:
18:
19:
20:

https://blog.paperspace.com/content/images/2018/05/challenges-1.png
https://www.cs.umd.edu/~tomg/img/landscapes/noshort.png
https://blog.paperspace.com/content/images/2018/05/grad.png
https://www.wandb.com/articles/intro-to-cnns-with-wandb
https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
https://wiki.tum.de/download/attachments/22578349/RNN1.png
https://stanford.edu/~shervine/teaching/cs-230/illustrations/architecture-rnn-ltr.png

[Srihari, 2020], p.8, (Fig. 1)




Thank you!
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