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Learning Objectives

n Introduction

n Learning paradigms

n Machine learning (ML) project pipeline

n Deep learning
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Introduction

n Goals

n “...give computers the ability to learn without being explicitly 
programmed“ [Samuels, 1959]

n Learning structures in given (un)labeled data to make 
predictions on new / unseen data

n Paradigm change 

n Before: manually designed / general-purpose features

n Now: joint representation learning (features) & data modeling 
(classification)

n Related disciplines

n Statistics, data science, optimization
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Introduction
Terminology

n Artificial Intelligence (AI)

n “an agent‘s ability to achieve goals 
in a wide range of environments“ 
[Legg & Hutter, 2007]

n Machine Learning (ML)

n Pattern recognition, data 
modeling, learning, prediction

n Deep Learning (DL)

n (Brain-inspired) artificial neural 
networks (ANN)

n Data Science

n Knowledge extraction from data

Machine 
Learning

Artificial
Intelligence

Deep 
Learning

Data Science

Own
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Introduction
Application Scenarios

n Computational finance (credit scoring, algorithmic trading)

n Computer vision (face & object recognition, motion detection)

n Computational biology (tumor detection, drug discovery, DNA 
sequencing)
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Introduction
Application Scenarios

n Computational finance (credit scoring, algorithmic trading)

n Computer vision (face & object recognition, motion detection)

n Computational biology (tumor detection, drug discovery, DNA 
sequencing)

n Energy (price & load forecasting)

n Predictive maintenance (automotive, aerospace, manufacturing)

n Natural language processing (sentiment classification, text search, 
translation)

n Machine listening (music transcription, instrument recognition, sound 
event detection, acoustic scene classification)
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Learning Paradigms

Fig. 1
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n Goal
n Find hidden structure and patterns in data
n No annotations available

n Clustering
n Grouping of similar data instances

Model

Clusters

Learning Paradigms 
Unsupervised Learning
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n Challenges
n What is the optimal number of clusters?

2 clusters

?

3 clusters

Learning Paradigms 
Unsupervised Learning
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n K-means clustering
n Initialize K “means” randomly (=cluster centroids)

Learning Paradigms 
Unsupervised Learning
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n K-means clustering
n K=3

Learning Paradigms 
Unsupervised Learning
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n K-means clustering
n Assignment: assign each data point to its closest mean
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n K-means clustering
n Assignment: assign each data point to its closest mean
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n K-means clustering
n Update: update mean by average over all assigned data points

Learning Paradigms 
Unsupervised Learning
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n K-means clustering
n Assignment: re-assign data points to closest mean

Learning Paradigms 
Unsupervised Learning
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n K-means clustering
n Update: re-assign data points to closest mean (repeat until 

convergence)

Learning Paradigms 
Unsupervised Learning
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Learning Paradigms
Supervised Learning

Fig. 1
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Learning Paradigms
Supervised Learning

Prediction
function Cost function

Update

e.g., images, 
audio samples

e.g., object class (cat, dog, …) or quantity (e.g. house price)

Own
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Learning Paradigms
Supervised Learning - Classification

Fig. 1
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Learning Paradigms
Supervised Learning - Classification

n Predict one or multiple categorical labels from features

n Examples → music genre, instrument(s), key



© Jakob Abeßer, 2022 

Learning Paradigms
Supervised Learning - Classification

n Predict one or multiple categorical labels from features

n Examples → music genre, instrument(s), key

n Feature space modeling (Example: 2 classes)

Fig. 3



© Jakob Abeßer, 2022 

Learning Paradigms
Supervised Learning - Classification

n Predict one or multiple categorical labels from features

n Examples → music genre, instrument(s), key

n Feature space modeling (Example: 2 classes)

Fig. 3



© Jakob Abeßer, 2022 

Learning Paradigms
Supervised Learning - Classification

n Example: k-Nearest Neighbors

n Training → Store all examples
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n Example: k-Nearest Neighbors

n Training → Store all examples

n Test → Assign test item to 
dominant class label of the k
clostest training data items

𝑘 = 3→ =?
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?

Class 1
Class 2

n Example: k-Nearest Neighbors

n Training → Store all examples

n Test → Assign test item to 
dominant class label of the k
clostest training data items

𝑘 = 11→ =?
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Learning Paradigms
Supervised Learning - Classification

n Example: k-Nearest Neighbors

n Training → Store all examples

n Test → Assign test item to 
dominant class label of the k
clostest training data items

n Distance measures

n Euclidean distance, Manhatten
distance, cosine distance, …



© Jakob Abeßer, 2022 

Learning Paradigms
Supervised Learning

Fig. 1
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Learning Paradigms
Supervised Learning - Regression
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Learning Paradigms
Supervised Learning - Regression

Data points 
(observations)

Predictions

Regression Line

Own
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Data Collection & Pre-
Processing

ML Project Pipeline
Overview

Own
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Data Collection & Pre-
Processing

e.g. 80%

Model 
Selection

Data 
Split

Training 
Data

Validation 
Data

Test 
Data

10% 10%

Model 
Training

Model 
Validation

Parameter Optimization

Model 
Testing

Metrics

ML Project Pipeline
Overview

Own
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ML Project Pipeline
Data Split

n Training Set

n Model learns from this data
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Data Split
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n Used to fine-tune the model (hyper)parameters 

n Model occasionally sees but does not learn from this data

n Test set

n Only used once after the model training & tuning is completed

n Should reflect the targeted real-world use case for the model
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ML Project Pipeline
Data Split

n Training Set

n Model learns from this data

n Validation / Development Set 

n Used to fine-tune the model (hyper)parameters 

n Model occasionally sees but does not learn from this data

n Test set

n Only used once after the model training & tuning is completed

n Should reflect the targeted real-world use case for the model

n Common split ratios

n 80/10/10%  or even 98/1/1% (for large datasets)
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ML Project Pipeline
Data Collection & Pre-Processing

n Data collection

n Check for available data resources for given (or related) task

n Collect / record / annotate new data (if necessary)

n Ensure data variability

n Example (from acoustic condition monitoring) → include
different motor engine types & conditions, recording 
locations, microphones, …
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ML Project Pipeline
Data Collection & Pre-Processing

n Data collection

n Check for available data resources for given (or related) task

n Collect / record / annotate new data (if necessary)

n Ensure data variability

n Example (from acoustic condition monitoring) → include
different motor engine types & conditions, recording 
locations, microphones, …

n Data cleanup / pre-processing

n Remove errors, silence, empty files, …

n Balance dataset (proportions among class examples)

n Normalize (depends on the model)
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ML Project Pipeline
Model Selection

n Model Types (SVM, GMM, logistic 
regression, DNNs)

n Hyperparameters (SVM kernel functions, 
DNN layer types)

Fig. 6
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ML Project Pipeline
Model Selection

n Model Types (SVM, GMM, logistic 
regression, DNNs)

n Hyperparameters (SVM kernel functions, 
DNN layer types)

n Constraints from application scenario

n Model complexity (memory, 
training time, training data 
amount)

n Feature pre-processing depends on model 
type

n Use simple models for simple tasks

Fig. 6



© Jakob Abeßer, 2022 

ML Project Pipeline
Model Training

n Iterative process

n Typically: start with random parameter initialization
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ML Project Pipeline
Model Training

n Iterative process

n Typically: start with random parameter initialization

n Use (batches of) training data to iteratively improve model 
predictions (optimization)

n Learn from examples

n Update model parameters according to loss function
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ML Project Pipeline
Model Training

n Example: linear regression

n Training loop

Own
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ML Project Pipeline
Model Validation

n Regular model evaluation each or 
multiple training iteration
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ML Project Pipeline
Model Validation

n Regular model evaluation each or 
multiple training iteration
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ML Project Pipeline
Model Validation

n Regular model evaluation each or 
multiple training iteration

n Helps to 

n optimize model 
(hyper)parameters

n detect overfitting on 
training data

n stop the training

Training Iterations

Loss

Training data

Validation data

Stop here! Fig. 7

Own
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ML Project Pipeline
Model Testing

Fig. 8

n Example: Binary classification evaluation

n True/false positives (TP/FP)

n True/false negatives (TN/FN)
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ML Project Pipeline
Model Testing

Fig. 8

n Example: Binary classification evaluation

n True/false positives (TP/FP)

n True/false negatives (TN/FN)

n Metrics

n Precision

n Recall

n Accuracy

n F-score
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Deep Learning
Introduction

n Artificial neural networks → mimic brain 
processing

n Connected neurons 

n Weighted input summation 

n Non-linear processing

Fig. 9
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Deep Learning
Introduction

n Artificial neural networks → mimic brain 
processing

n Connected neurons 

n Weighted input summation 

n Non-linear processing

n Shallow networks → deep networks

Fig. 10

Fig. 9
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Deep Learning
Introduction

n Hierarchical feature learning

n Example (face recognition)

First layers Final layers

Edges, curves Fig. 11
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Deep Learning
Introduction

n Hierarchical feature learning

n Example (face recognition)

First layers Final layers

Edges, curves Shapes, object parts Objects (faces) Fig. 11
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Deep Learning
Fully-connected (Deep) Neural Networks

Input layer

Own
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Deep Learning
Fully-connected (Deep) Neural Networks

Input layer Hidden layers Output layer

Own
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Deep Learning
Activation Functions

n Activation functions add non-linearity

n Make networks more powerful in (complex) pattern recognition

n Examples:

Fig. 12
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Deep Learning
Training

n Overview

Own
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Deep Learning
Training

n Overview

https://www.skampakis.com/wp-
content/uploads/2018/03/simple_neural_
network_vs_deep_learning.jpgDNN

Forward 
propagation

Own
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Deep Learning
Training

n Overview

https://www.skampakis.com/wp-
content/uploads/2018/03/simple_neural_
network_vs_deep_learning.jpgDNN Loss

Forward 
propagation

Own
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Deep Learning
Training

n Overview

https://www.skampakis.com/wp-
content/uploads/2018/03/simple_neural_
network_vs_deep_learning.jpgDNN Loss

Gradient w.r.t 
model 

weights

Forward 
propagation

Back-
propagation

Weight 
update

Own
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Deep Learning
Training

n Forward propagation → propagate batch of training data through the 
network → compute loss (compare to targets)

Fig. 20
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Deep Learning
Training

n Forward propagation → propagate batch of training data through the 
network → compute loss (compare to targets)

n Backpropagation → backpropagate loss → compute gradients of loss 
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Deep Learning
Training

n Forward propagation → propagate batch of training data through the 
network → compute loss (compare to targets)

n Backpropagation → backpropagate loss → compute gradients of loss 
w.r.t. weights

n Weights update → use gradients & learning rate to update weights

Fig. 20
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Deep Learning
Training

n Gradient descent

n Move in opposite direction of gradient

n Learning rate effects step size

Fig. 15

Loss

𝑤! 𝑤"
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Deep Learning
Training

n Loss contour

n Goal → find global minima

Toy example Complex DNN

Fig. 13 Fig. 14
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Deep Learning
Playground

n A neural network playground!

n https://playground.tensorflow.org

https://playground.tensorflow.org/
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Deep Learning
Convolutional Neural Networks (CNN)

n Convolutional layers

n “Convolution” → (local) dot-product 
between filter and input 

Fig. 16

InputFilter / Kernel

Feature Map
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Deep Learning
Convolutional Neural Networks (CNN)

n Convolutional layers

n “Convolution” → (local) dot-product 
between filter and input 

n Shared weights (fewer parameters)

n Translation of input → translation of 
activations (equivariance)

n Pooling → local aggregation / down-sampling 

Fig. 16

Fig. 17

InputFilter / Kernel

Feature Map
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Deep Learning
Recurrent Neural Networks (RNN)

n Recurrent layers

n Model sequential data → model dynamic temporal behaviour

n Internal memory state(s) → memorize previous data for future
predictions
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Deep Learning
Recurrent Neural Networks (RNN)

n Recurrent layers

n Model sequential data → model dynamic temporal behaviour

n Internal memory state(s) → memorize previous data for future 
predictions

n Vanishing gradient problem

n Gating mechanisms (Gated Recurrent Units (GRU), Long Short-term 
Memory (LSTM)

Output

Input Fig. 18
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Deep Learning
Recurrent Neural Networks (RNN)

n Application Examples

n One-to-many: sequential music generation (given a starting note)

Fig. 19
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Recurrent Neural Networks (RNN)
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Deep Learning
Recurrent Neural Networks (RNN)

n Application Examples

n One-to-many: sequential music generation (given a starting note)

n Many-to-one: sentiment classification (positive vs. negative)

n Many-to-many: machine translation (e.g., Spanish to German)

Fig. 19
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Deep Learning
Autoencoders

n Symmetric architecture (decoder & encoder)

x y

Encoder Decoder

Input Output

Embeddings

Own
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Deep Learning
Autoencoders

n Symmetric architecture (decoder & encoder)

n Objective: minimize reconstruction error (e.g., mean squared error, MSE)
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Input Output
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Deep Learning
Autoencoders

n Symmetric architecture (decoder & encoder)

n Objective: minimize reconstruction error (e.g., mean squared error, MSE)

n Compression of input (embedding)

n Prioritize important information → learn useful representations

x y

MSE

Encoder Decoder

Input Output

Embeddings

Own
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Summary

n Introduction

n Terminology, application scenarios

n Learning Paradigms

n Unsupervised, supervised, self-supervised learning

n ML project pipeline

n Data collection, pre-processing, split

n Model selection, training, validation, testing

n Deep Learning

n DNN, CNN, RNN, Autoencoders
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Thank you!

n Any questions?
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