Machine Listening for Music and Sound

Analysis

Lecture 1 — Audio Representations

Dr.-Ing. Jakob AbeBer
Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de




Learning Objectives

W Sound categories

B Music representations

B Audio representations

B Audio signal decomposition

B Audio features




Sound Categories
Environmental Sounds

B Sound sources
B Animals, humans, machines
B Sound characteristics

M Stationary or non-stationary, repetitive or without any
predictable nature

B Sound duration
M Very short (gun shot, door knock, shouts)

M Very long (running machines, wind, rain)
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Sound Categories
Music Signals

B Sound sources
B Music instruments
B Sound production mechanisms (brass, wind, string, percussive)
M Singing Voice
B Sound characteristics
B Mostly well structured along
B Frequency (pitch, overtone relationships, harmony)

B Time (onset, rhythm, structure)




Music Representations
Recording & Notation

B Music recording (waveform)
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Music Representations

MIDI

B Sequence of note events (MIDI)
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Music Representations
MusicXML

B Textual description of note events (MusicXML)

<note>
<pitch> = ‘-t
<step>E</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>
<duration>2</duration>
<type>half</type>
</note>
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Audio Representations
Short-term Fourier Transform (STFT)

B Discrete Short-Term Fourier
Transform (STFT)

® Windowed analysis of audio signals
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Audio Representations
Short-term Fourier Transform (STFT)

B Discrete Short-Term Fourier Transform (STFT)
N-1
X(mk) = 2 x(n + mH)w(n)e2mkn/N
n=0
B Windowed local signal frames (with overlap)
B Time-frequency decomposition




Audio Representations
Short-term Fourier Transform (STFT)

B Discrete Short-Term Fourier Transform (STFT)
N-1
X(mk) = z x(n + mH)w(n)e2mkn/N

n=0

B Windowed local signal frames (with overlap)

B Time-frequency decomposition

B Linearly-spaced frequency axis

B Trade-off between

B Frequency resolution

B Time resolution




Audio Representations
Short-term Fourier Transform (STFT)

B Example: Sinusoid signal, two frequencies
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Audio Representations
Short-term Fourier Transform (STFT)

B Example: C major scale, fundamental frequencies (f0) & overtones
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Audio Representations
Constant-Q Transform (CQT)

B Bank of filters with geometrically spaced center frequencies

fro = fo- 25"

k - Filter index
b - Number of filters per octave




Audio Representations
Constant-Q Transform (CQT)

B Bank of filters with geometrically spaced center frequencies

fro = fo- 25"
k - Filter index

b - Number of filters per octave

W Filter bandwidth (for adjacent filters)
1
A= fos1— T =Tk (2” — 1)

B Increasing time resolution towards higher frequencies
B Resembles human auditory perception




Audio Representations
Constant-Q Transform (CQT)

B Constant frequency-to-resolution ratio
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Audio Representations
Constant-Q Transform (CQT)

B Constant frequency-to-resolution ratio

e 1
Q_Ak_Q%_l

B Correspondence to musical note frequencies

m—69
2

fn[Hz] = 440 - 275

m: MIDI pitch
440 Hz = “A4" (reference pitch)




Audio Representations
Constant-Q Transform (CQT)

W STFT (linearly-spaced frequencies)
B CQT (logarithmically-spaced, closer to human auditory perception)
B Fixed number of frequency bins per octave

B Increasing time resolution towards higher frequencies




Audio Representations
Constant-Q Transform (CQT)

B STFT (linearly-spaced frequencies)

B CQT (logarithmically-spaced, closer to human auditory perception)
B Fixed number of frequency bins per octave

B Increasing time resolution towards higher frequencies
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Audio Representations
Constant-Q Transform (CQT)

M Suitable for music transcription

W Partials have a constant frequency pattern
B Vertically shifted

M Pitch-independent

STFT
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Audio Representations
Mel Spectrogram

B Logarithmic frequency mapping (human pitch perception)

® f[mel] = 2595 log;o (1+2°7)
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Audio Representations
Mel Spectrogram

B Mapping from STFT magnitude spectrogram to Mel spectrogram

B Triangular filterbank + Matrix multiplication




Audio Representations
Mel Spectrogram

B Mapping from STFT magnitude spectrogram to Mel spectrogram
B Triangular filterbank + Matrix multiplication
B Example: 16 mel bands, f; = 22.05 kHz

Triangular Filters

Frequency [kHz]




Audio Representations
Mel Spectrogram

B More efficient representation (fewer frequency bands)

W Still captures perceptually relevant information




Audio Representations
Mel Spectrogram

M More efficient representation (fewer frequency bands)
W Still captures perceptually relevant information
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Audio Representations

Mel Spectrogram

M More efficient representation (fewer frequency bands)

W Still captures perceptually relevant information
Mel Spectrogram

STFT
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Audio Signal Decomposition
Periodic Signals

B Periodic signals:

B Sum of pure tones (partials)

B Fundamental frequency f,

B Harmonics f;, (approx. integer multiples of f):
B fie~(k+1)-fo
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Audio Signal Decomposition
Periodic Signals

B Periodic signals:

B Sum of pure tones (partials)

Fundamental frequency f

Harmonics fj

(approx. integer multiples of f;):

B fie=(k+1)-fo
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Audio Signal Decomposition
Pitch

B Perceptual property (sort sounds from low to high pitch)

B Closely related to frequency
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Audio Signal Decomposition
Frequency Modulation

M Techniques

M Glissando — continuous transition between note
pitches

M Vibrato — periodic frequency modulation

T
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Audio Signal Decomposition
Transients

B Sound characteristics
® High amplitude
M Short duration
B Wide-band signal




Audio Signal Decomposition

Transients (Examp*l*es)*
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Audio Signal Decomposition

Transients (Examp{l*es)*
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Audio Signal Decomposition

Transients (Examp{l*es)*
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Audio Signal Decomposition
Noise

B Sound characteristics
B Non-periodic, texture-like

M Random fluctuations of air pressure




Audio Signal Decomposition

Noise

B Sound characteristics

B Non-periodic, texture-like

M Random fluctuations of air pressure

M Examples

B Consonants (speech)

B Wind (random aerodynamic turbulences)

B Waves (ocean) )
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Audio Features
Motivation

B Compact representation of audio signal for machine learning applications
B Capture different properties at different semantic levels

¥ Timbre - perceived sound, instrumentation

B Rhythm - tempo, meter

B Melody/Tonality — pitches, harmonies

W Structure - repetitions, novelty, homogeneous segments




Audio Features
Timbre

B Timbre

¥ Timbre distinguishes musical sounds that have the same pitch
(fundamental frequency) and loudness




Audio Features
Timbre

B Timbre

¥ Timbre distinguishes musical sounds that have the same pitch
(fundamental frequency) and loudness

B Affected by different acoustic phenomena such as

W Spectral structure / envelope of overtones
M Noise-like components




Audio Features
Timbre

B Timbre

¥ Timbre distinguishes musical sounds that have the same pitch
(fundamental frequency) and loudness

B Affected by different acoustic phenomena such as

W Spectral structure / envelope of overtones
M Noise-like components

M Formants (speech)

B Inharmonicity (non-integer relationship between partials)

M Variations over time: frequency (vibrato) or loudness
(tremolo)

] FMP Notebooks




Audio Features
Timbre

B Timbre

B When looking at musical instruments, we need to consider
B |nstrument’s construction




Audio Features
Timbre

B Timbre

B When looking at musical instruments, we need to consider
B |nstrument’s construction

M Sound production principles

B Membranophones, chordophones, aerophones,
electrophones




Audio Features
Timbre

B Timbre

B When looking at musical instruments, we need to consider
B |nstrument’s construction

M Sound production principles

B Membranophones, chordophones, aerophones,
electrophones

B Human performance

B Playing techniques, expressivity, dynamics, style




Audio Features
Temporal Envelope

B Smooth curve outlining the signal extreme points
B ADSR envelope model (also used for audio synthesis)

B Attack, Decay, Sustain, Release

Idealized ADSR model Piano sound Violin sound
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Audio Features
Temporal Envelope

B Tremolo

M Periodic amplitude modulation

B Often coincides with frequency modulation (vibrato)
B Examples: instrument sounds

FMP Notebooks




Audio Features

Categorization
Low-Level - Zero Crossing Rate (ZCR)
(Q~10 ms) - Linear Predictive Coding
(LPC)

- Spectral Centroid /
Spectral Flatness

Mid-Level - Mel-Frequency Cepstral - Tempogram - Chromagram
(Q ~ 2.55) Coefficients (MFCC) - Log-Lag - Enhanced
- Octave-Based Spectral Autocorrelation Pitch Class
Contrast (OSC) (ACF) Profiles (EPCP)
- Loudness
High-Level - Instrumentation - Tempo - Key
- Time Signature - Scales
- Rhythm - Chords

Patterns




Audio Features

Categorization
Low-Level - Zero Crossing Rate (ZCR)
(Q~10 ms) - Linear Predictive Coding
(LPC)

- Spectral Centroid/
Spectral Flatness

Mid-Level - Mel-Frequency Cepstral - Tempogram - Chromagram
(Q ~ 2.55) Coefficients (MFCC) - Log-Lag - Enhanced
- Octave-Based Spectral Autocorrelation Pitch Class
Contrast (OSC) (ACF) Profiles (EPCP)
- Loudness
High-Level - Instrumentation - Tempo - Key
- Time Signature - Scales
- Rhythm - Chords

Patterns




Audio Features

Timbre Low-level Audio Features

B Spectral Centroid (SQ):

B Center of mass in the
magnitude spectrogram

B Low-pitched vs. high-
pitched sounds

bass_drum_note, spectral centroid = 199.13 Hz, spectral flatnes = 0.23
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Audio Features

Timbre Low-level Audio Features

B Spectral Centroid (SQ):

B Center of mass in the
magnitude spectrogram

B Low-pitched vs. high-
pitched sounds

W Spectral Flatness Measure (SFM)

B Harmonic sounds (sparse
energy distribution)

B Percussive sounds
(wideband energy
distribution)

bass_drum_note, spectral centroid = 199.13 Hz, spectral flatnes = 0.23
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Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

B Convolutive excitation * filter model Audio signal
B Excitation: vibration of vocal folds
B Filter: resonance of the vocal tract

Own




Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

B Convolutive excitation * filter model

Audio signal
W Excitation: vibration of vocal folds '
M Filter: resonance of the vocal tract FFT
B FFT magnitude spectrum | Spectrum
B Multiplicative excitation - filter model Mel-
Filterbank

l

Own




Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

B Convolutive excitation * filter model

Audio signal
W Excitation: vibration of vocal folds ¢
M Filter: resonance of the vocal tract FFT
B FFT magnitude spectrum | Spectrum
B Multiplicative excitation - filter model Mel-
B Logarithm of magnitude spectrum Filterbank
B Additive excitation + filter model v
log(]-*)
l Cepstrum

Own




Audio Features

Mel-Frequency Cepstral Coefficients (MFCC)

B Convolutive excitation * filter model

M Excitation: vibration of vocal folds

B Filter: resonance of the vocal tract
B FFT magnitude spectrum

B Multiplicative excitation - filter model
B Logarithm of magnitude spectrum

B Additive excitation + filter model
B Discrete Cosine Transform (DCT)

M First coefficients allow for a compact

description of the spectral envelope
shape

Audio signal
v
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Spectrum

A 4

Mel-
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A 4
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Audio Features

Mel-Frequency Cepstral Coefficients (MFCC)

B Compact representation of spectral envelope

Audio signal
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Audio Processing
Chroma Features

B Human pitch perception is periodic

M 2 pitches one octave apart are perceived as similar




Audio Processing
Chroma Features

B Human pitch perception is periodic
M 2 pitches one octave apart are perceived as similar

B Pitch = chroma + tone height
B Chroma: C, C#, D, D#, ..., B (12)

B Tone height: Octave number

Figure 3.3a from [Miiller, FMP, Springer 2015]

C1 C2 C3 C4 C5 C6 C7 C8
24 36 48 60 72 84 96 108




Audio Processing
Chroma Features

B Example )
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Summary

B Sound categories

B Music representations

M Audio representations

B Audio signal decomposition

B Audio features
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Sounds

AUD-1: Medley: https://freesound.org/people/inspector)/sounds/416529,
https:/freesound.org/people/prometheus888/sounds/458461,
https:/freesound.org/people/MrAuralization/sounds/317361

AUD-2: Medley: https://freesound.org/people/whatsanickname4u/sounds/127337,
https:/freesound.org/people/jcveliz/sounds/92002, https://freesound.org/people/klankbeeld/sounds/192691

[Audio 1] https://freesound.org/people/xserra/sounds/196765/

[Audio 2] https://freesound.org/people/lliasFlou/sounds/498058/ (~0:00 — 0:05)
[Audio 3] https://freesound.org/people/danlucaz/sounds/517860/ (~0:00 — 0:05)
[Audio 4] https://freesound.org/people/IENBA/sounds/489398/ (~0:00 — 0:07)




Thank you!

B Any questions?

Dr.-Ing. Jakob Abefer
Fraunhofer IDMT
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