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Learning Objectives

n Sound categories

n Music representations

n Audio representations 

n Audio signal decomposition

n Audio features
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Sound Categories
Environmental Sounds

n Sound sources

n Animals, humans, machines

n Sound characteristics

n Stationary or non-stationary, repetitive or without any 
predictable nature

n Sound duration

n Very short (gun shot, door knock, shouts) 

n Very long (running machines, wind, rain)

AUD-1 Fig. 1 Fig. 2 Fig. 3
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Sound Categories
Music Signals

n Sound sources

n Music instruments 

n Sound production mechanisms (brass, wind, string, percussive)

n Singing Voice

n Sound characteristics

n Mostly well structured along

n Frequency (pitch, overtone relationships, harmony) 

n Time (onset, rhythm, structure)

AUD-2 Fig. 4 Fig. 5 Fig. 6
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Music Representations
Recording & Notation

n Music recording (waveform)

n Music notation (score)

Fig. 7

FMP Notebooks

Own
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Music Representations
MIDI

n Sequence of note events (MIDI)

Fig. 8

FMP Notebooks
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Music Representations
MusicXML

n Textual description of note events (MusicXML)

Fig. 9
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n Discrete Short-Term Fourier 
Transform (STFT)

n Windowed analysis of audio signals

Audio Representations
Short-term Fourier Transform (STFT)

Fig. 9.5
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n Discrete Short-Term Fourier Transform (STFT)

n Windowed local signal frames (with overlap)

n Time-frequency decomposition

Audio Representations
Short-term Fourier Transform (STFT)
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n Discrete Short-Term Fourier Transform (STFT)

n Windowed local signal frames (with overlap)

n Time-frequency decomposition

n Linearly-spaced frequency axis

n Trade-off between

n Frequency resolution 

n Time resolution 

Audio Representations
Short-term Fourier Transform (STFT)
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n Example: Sinusoid signal, two frequencies

Audio Representations
Short-term Fourier Transform (STFT)

Fig. 10
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n Example: C major scale, fundamental frequencies (f0) & overtones

Audio Representations
Short-term Fourier Transform (STFT)

Fig. 11
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n Bank of filters with geometrically spaced center frequencies

k - Filter index

b - Number of filters per octave

Audio Representations
Constant-Q Transform (CQT)

fk = f0 · 2
k/b
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n Bank of filters with geometrically spaced center frequencies

k - Filter index

b - Number of filters per octave

n Filter bandwidth (for adjacent filters)

n Increasing time resolution towards higher frequencies 

n Resembles human auditory perception

Audio Representations
Constant-Q Transform (CQT)

fk = f0 · 2
k/b

∆k = fk+1 − fk = fk

(

2
1

b
− 1

)
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n Constant frequency-to-resolution ratio

Audio Representations
Constant-Q Transform (CQT)

Q =
fk
∆k

=
1

2
1

b
−1
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n Constant frequency-to-resolution ratio

n Correspondence to musical note frequencies

m: MIDI pitch

440 Hz = “A4” (reference pitch)

Audio Representations
Constant-Q Transform (CQT)

Q =
fk
∆k

=
1

2
1

b
−1

fm[Hz] = 440 · 2
m−69

12
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n STFT (linearly-spaced frequencies)
n CQT (logarithmically-spaced, closer to human auditory perception)
n Fixed number of frequency bins per octave
n Increasing time resolution towards higher frequencies 

Audio Representations
Constant-Q Transform (CQT)
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n STFT (linearly-spaced frequencies)
n CQT (logarithmically-spaced, closer to human auditory perception)
n Fixed number of frequency bins per octave
n Increasing time resolution towards higher frequencies 

Audio Representations
Constant-Q Transform (CQT)

Audio 1
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n Suitable for music transcription
n Partials have a constant frequency pattern 
n Vertically shifted
n Pitch-independent

Audio Representations
Constant-Q Transform (CQT)

Audio 1
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Audio Representations
Mel Spectrogram
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n Mapping from STFT magnitude spectrogram to Mel spectrogram
n Triangular filterbank + Matrix multiplication

Audio Representations
Mel Spectrogram
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Audio Representations
Mel Spectrogram
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n More efficient representation (fewer frequency bands)
n Still captures perceptually relevant information

Audio Representations
Mel Spectrogram
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n More efficient representation (fewer frequency bands)
n Still captures perceptually relevant information

Audio Representations
Mel Spectrogram

STFT Mel Spectrogram Audio 3
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n More efficient representation (fewer frequency bands)
n Still captures perceptually relevant information

Audio Representations
Mel Spectrogram

STFT Mel Spectrogram

(513 frequency bands)

Compression by 96.9 %

(16 mel bands)
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Audio Signal Decomposition
Periodic Signals
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Audio Signal Decomposition
Periodic Signals
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Audio Signal Decomposition
Pitch

Fig. 2.5



© Jakob Abeßer, 2022 

Audio Signal Decomposition
Frequency Modulation

n Techniques
n Glissando – continuous transition between note 

pitches
n Vibrato – periodic frequency modulation

Fig. 2.6Spectrogram example (frequency x time)
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Audio Signal Decomposition
Transients

n Sound characteristics
n High amplitude 
n Short duration
n Wide-band signal
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Audio Signal Decomposition
Transients (Examples)

n String 
instruments 

Audio 1
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Audio Signal Decomposition
Transients (Examples)

n String 
instruments 

n Bat 
vocalizations 

Audio 2

Audio 1

… …… …
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Audio Signal Decomposition
Transients (Examples)

n String 
instruments 

n Bat 
vocalizations 

n Drum 
instruments

Audio 2

Audio 3

Audio 1

… … … …

… …
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Audio Signal Decomposition
Noise

n Sound characteristics
n Non-periodic, texture-like
n Random fluctuations of air pressure



© Jakob Abeßer, 2022 

Audio Signal Decomposition
Noise

n Sound characteristics
n Non-periodic, texture-like
n Random fluctuations of air pressure

n Examples
n Consonants (speech)
n Wind (random aerodynamic turbulences)
n Waves (ocean) Audio 4
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Audio Features
Motivation

n Compact representation of audio signal for machine learning applications

n Capture different properties at different semantic levels

n Timbre – perceived sound, instrumentation

n Rhythm – tempo, meter

n Melody/Tonality – pitches, harmonies

n Structure – repetitions, novelty, homogeneous segments
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n Timbre

n Timbre distinguishes musical sounds that have the same pitch 
(fundamental frequency) and loudness

Audio Features
Timbre
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n Timbre

n Timbre distinguishes musical sounds that have the same pitch 
(fundamental frequency) and loudness

n Affected by different acoustic phenomena such as

n Spectral structure / envelope of overtones

n Noise-like components

Audio Features
Timbre
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n Timbre

n Timbre distinguishes musical sounds that have the same pitch 
(fundamental frequency) and loudness

n Affected by different acoustic phenomena such as

n Spectral structure / envelope of overtones

n Noise-like components

n Formants (speech)

n Inharmonicity (non-integer relationship between partials)

n Variations over time: frequency (vibrato) or loudness 
(tremolo)

Audio Features
Timbre

FMP Notebooks
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n Timbre

n When looking at musical instruments, we need to consider

n Instrument’s construction 

Audio Features
Timbre
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n Timbre

n When looking at musical instruments, we need to consider

n Instrument’s construction 

n Sound production principles 

n Membranophones, chordophones, aerophones, 
electrophones

Audio Features
Timbre
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n Timbre

n When looking at musical instruments, we need to consider

n Instrument’s construction 

n Sound production principles 

n Membranophones, chordophones, aerophones, 
electrophones

n Human performance 

n Playing techniques, expressivity, dynamics, style

Audio Features
Timbre
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Audio Features
Temporal Envelope

n Smooth curve outlining the signal extreme points
n ADSR envelope model (also used for audio synthesis)

n Attack, Decay, Sustain, Release

Fig. 2.7



© Jakob Abeßer, 2022 

Audio Features
Temporal Envelope

n Tremolo
n Periodic amplitude modulation
n Often coincides with frequency modulation (vibrato)
n Examples: instrument sounds

Fig. 2.7

FMP Notebooks



© Jakob Abeßer, 2022 

Timbre Rhythm Tonality

Low-Level
(Q~10 ms)

- Zero Crossing Rate (ZCR)
- Linear Predictive Coding 

(LPC)
- Spectral Centroid / 

Spectral Flatness

Mid-Level
(Q ~ 2.5s)

- Mel-Frequency Cepstral 
Coefficients (MFCC)

- Octave-Based Spectral 
Contrast (OSC)

- Loudness

- Tempogram
- Log-Lag 

Autocorrelation 
(ACF)

- Chromagram
- Enhanced 

Pitch Class 
Profiles (EPCP) 

High-Level - Instrumentation - Tempo
- Time Signature
- Rhythm 

Patterns

- Key
- Scales
- Chords

Audio Features
Categorization
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Timbre Rhythm Tonality

Low-Level
(Q~10 ms)

- Zero Crossing Rate (ZCR)
- Linear Predictive Coding 

(LPC)
- Spectral Centroid / 

Spectral Flatness

Mid-Level
(Q ~ 2.5s)

- Mel-Frequency Cepstral 
Coefficients (MFCC)

- Octave-Based Spectral 
Contrast (OSC)

- Loudness

- Tempogram
- Log-Lag 

Autocorrelation 
(ACF)

- Chromagram
- Enhanced 

Pitch Class 
Profiles (EPCP) 

High-Level - Instrumentation - Tempo
- Time Signature
- Rhythm 

Patterns

- Key
- Scales
- Chords

Audio Features
Categorization
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n Spectral Centroid (SC):

n Center of mass in the 
magnitude spectrogram

n Low-pitched vs. high-
pitched sounds

Audio Features
Timbre Low-level Audio Features

Own
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n Spectral Centroid (SC):

n Center of mass in the 
magnitude spectrogram

n Low-pitched vs. high-
pitched sounds

n Spectral Flatness Measure (SFM)

n Harmonic sounds (sparse 
energy distribution) 

n Percussive sounds 
(wideband energy 
distribution)

Audio Features
Timbre Low-level Audio Features

Own
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n Convolutive excitation * filter model 

n Excitation: vibration of vocal folds 

n Filter: resonance of the vocal tract

Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

Audio signal

Own
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n Convolutive excitation * filter model 

n Excitation: vibration of vocal folds 

n Filter: resonance of the vocal tract

n FFT magnitude spectrum

n Multiplicative excitation · filter model

Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

FFT

Mel-
Filterbank

Audio signal

Spectrum

Own
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n Convolutive excitation * filter model 

n Excitation: vibration of vocal folds 

n Filter: resonance of the vocal tract

n FFT magnitude spectrum

n Multiplicative excitation · filter model

n Logarithm of magnitude spectrum

n Additive excitation + filter model

Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

FFT

Mel-
Filterbank

Audio signal

Spectrum

Cepstrum

Own
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n Convolutive excitation * filter model 

n Excitation: vibration of vocal folds 

n Filter: resonance of the vocal tract

n FFT magnitude spectrum

n Multiplicative excitation · filter model

n Logarithm of magnitude spectrum

n Additive excitation + filter model

n Discrete Cosine Transform (DCT)

n First coefficients allow for a compact 
description of the spectral envelope 
shape

Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

FFT

Mel-
Filterbank

DCT

Audio signal

Spectrum

Cepstrum

MFCC Own
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Audio Features
Mel-Frequency Cepstral Coefficients (MFCC)

n Compact representation of spectral envelope

Audio signal STFT

Mel Filterbank

Log-Magnitude

Discrete Cosine 
Transform (DCT)MFCC
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Audio Processing
Chroma Features

n Human pitch perception is periodic
n 2 pitches one octave apart are perceived as similar
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Audio Processing
Chroma Features

n Human pitch perception is periodic
n 2 pitches one octave apart are perceived as similar
n Pitch = chroma + tone height 

n Chroma: C, C#, D, D#, …, B (12)
n Tone height: Octave number

Fig. 2.8
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Audio Processing
Chroma Features

n Example Audio 1

Octave
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Summary

n Sound categories

n Music representations

n Audio representations 

n Audio signal decomposition

n Audio features
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Sounds

AUD-1: Medley: https://freesound.org/people/InspectorJ/sounds/416529, 
https://freesound.org/people/prometheus888/sounds/458461, 
https://freesound.org/people/MrAuralization/sounds/317361

AUD-2: Medley: https://freesound.org/people/whatsanickname4u/sounds/127337, 
https://freesound.org/people/jcveliz/sounds/92002, https://freesound.org/people/klankbeeld/sounds/192691

[Audio 1] https://freesound.org/people/xserra/sounds/196765/ 

[Audio 2] https://freesound.org/people/IliasFlou/sounds/498058/ (~0:00 – 0:05)

[Audio 3] https://freesound.org/people/danlucaz/sounds/517860/ (~0:00 – 0:05)

[Audio 4] https://freesound.org/people/IENBA/sounds/489398/ (~0:00 – 0:07)
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Thank you!

n Any questions?

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://www.machinelistening.de


